In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. |
| |
Authors: | Henryk J Salacinski Nigel R Tai Robert J Carson Alan Edwards George Hamilton Alexander M Seifalian |
| |
Affiliation: | Tissue Engineering Laboratories, University Department of Surgery, Royal Free and University College Medical School, University College London, Royal Free Hospital, Pond Street, London NW3 2QG, United Kingdom. |
| |
Abstract: | Poly(ester)urethane and poly(ether)urethane vascular grafts fail in vivo because of hydrolytic and oxidative degradative mechanisms. Studies have shown that poly(carbonate)urethanes have enhanced resistance. There is still a need for a viable, nonrigid, small-diameter, synthetic vascular graft. In this study, we sought to confirm this by exposing a novel formulation of compliant poly(carbonate-urea)urethane (CPU) manufactured by an innovative process, resulting in a stress-free. Small-diameter prosthesis, and a conventional poly(ether)urethane Pulse-Tec graft known to readily undergo oxidation in a variety of degradative solutions, and we assessed them for the development of oxidative and hydrolytic degradation, changes in elastic properties, and chemical stability. To simulate the in vivo environment, we used buffered solutions of phospholipase A(2) and cholesterol esterase; solutions of H(2)O(2)/CoCl(2), t-butyl peroxide/CoCl(2) (t-but/CoCl(2)), and glutathione/t-butyl peroxide/CoCl(2) (Glut/t-but/CoCl(2)); and plasma fractions I-IV, which were derived from fresh human plasma centrifuged in poly(ethylene glycol). To act as a negative control, both graft types were incubated in distilled water. Samples of both graft types (100 mm with a 5.0-mm inner diameter) were incubated in these solutions at 37 degrees C for 70 days before environmental scanning electron microscopy, radial tensile strength and quality control, gel permeation chromatography, and in vitro compliance assessments were performed. Oxidative degradation was ascertained from significant changes in molecular weight with respect to a control on all Pulse-Tec grafts treated with t-but/CoCl(2), Glut/t-but/CoCl(2), and plasma fractions I-III. Pulse-Tec grafts exposed to the H(2)O(2)/CoCl(2) mixture had significantly greater compliance than controls incubated in distilled water (p < 0.001 at 50 mmHg). No changes in molecular weight with respect to the control were observed for the CPU samples; only those immersed in t-but/CoCl(2) and Glut/t-but/CoCl(2) showed an 11% increase in molecular weight to 108,000. Only CPU grafts treated with the Glut/t-but/CoCl(2) mixture exhibited significantly greater compliance (p < 0.05 at 50 mmHg). Overall, results from this study indicate that CPU presents a far greater chemical stability than poly(ether)-urethane grafts do. |
| |
Keywords: | |
|
|