Evaluation of an automated magnetic bead-based DNA extraction and real-time PCR in fecal samples as a pre-screening test for detection of Echinococcus multilocularis and Echinococcus canadensis in coyotes |
| |
Authors: | Santa Maria A. Pastran Sonya Klein Claudia Ruckstuhl Kathreen Massolo Alessandro |
| |
Affiliation: | 1.Department of Biology, University of Calgary, AB, T2N 1N4, Canada ;2.Department of Veterinary Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, AB, T2N 4Z6, Canada ;3.Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, AB, T2N 4Z6, Canada ;4.Ethology Unit, Department of Biology, University of Pisa, 56126, Pisa, Italy ;5.UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, 25030, Besançon, France ; |
| |
Abstract: |
Efficient and sensitive diagnostic tools are essential for the study of the eco-epidemiology of Echinococcus species. We evaluated an automated magnetic bead-based DNA extraction commercial kit followed by qPCR (MB-qPCR), for the detection of Echinococcus multilocularis and Echinococcus canadensis in coyote (Canis latrans) fecal samples. The diagnostic sensitivity was determined by validating the method against the scraping, filtration, and counting technique (SFCT) for samples collected in Canada. From the 60 samples tested, 27 out of 31 SFCT positives samples for Echinococcus cestodes were positive in the MB-qPCR for E. multilocularis, with a sensitivity of 87.1% (95% CI 70.2 to 96.4%). Two samples were also positive for E. canadensis in the MB-qPCR and confirmed by morphological identification of adult worms. The agreement of the MB-qPCR and the SFCT was statistically significant with a kappa value of 0.67 (95% CI 0.48–0.85; p value < 0.001). The magnetic bead-based DNA extraction followed by qPCR proved to have a sensitivity comparable to the SFCT to detect E. multilocularis. Although the diagnostic sensitivity for E. canadensis was not estimated, MB-qPCR identified E. canadensis cases previously overlooked when using SFCT. We propose a combination of molecular and morphological identification using the MB-qPCR and the SFCT to detect both parasites, allowing for a more efficient large-scale surveillance, and detecting co-infections of Echinococcus species that can be difficult to identify when only based on morphology. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|