Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries |
| |
Authors: | Beibei Ma Yewei Huang Zhenzhen Nie Xiaobin Qiu Dawei Su Guoxiu Wang Jianmin Yuan Xiuqiang Xie Zhenjun Wu |
| |
Affiliation: | College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China.; Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007 Australia.; College of Materials Science and Engineering, Hunan University, Changsha 410082 P. R. China |
| |
Abstract: | A comparatively facile and ecofriendly process has been developed to synthesize porous carbon materials from Camellia oleifera shells. Potassium carbonate solution (K2CO3) impregnation is introduced to modify the functional groups on the surface of Camellia oleifera shells, which may play a role in promoting the development of pore structure during carbonization treatment. Moreover, a small amount of naturally embedded nitrogen and sulfur in the Camellia oleifera shells can also bring about the formation of pores. The Camellia oleifera shell-derived carbon has a large specific surface area of 1479 m2 g−1 with a total pore volume of 0.832 cm3 g−1 after being carbonized at 900 °C for 1 h. Furthermore, when used as an anode for lithium-ion batteries, the sample shows superior electrochemical performance with a specific capacity of 483 mA h g−1 after 100 cycles measured at 200 mA g−1 current density. Surprisingly, the specific capacity is even gradually increased with cycling. In addition, this sample exhibits almost 100% retention capacity after 250 cycles at a current density of 200 mA g−1.Bio-waste Camellia oleifera shells (COS) are converted into porous carbon by a two-step method. |
| |
Keywords: | |
|
|