首页 | 本学科首页   官方微博 | 高级检索  
     


A mathematical model of optimized radioiodine-131 therapy of Graves' hyperthyroidism
Authors:Suhail AR Doi  Issa Loutfi  Kamal AS Al-Shoumer
Affiliation:1. Endocrinology, Mubarak Al Kabeer Teaching Hospital & Faculty of Medicine, Kuwait University, Jabriya, Kuwait
2. Nuclear Medicine Divisions, Mubarak Al Kabeer Teaching Hospital & Faculty of Medicine, Kuwait University, Jabriya, Kuwait
Abstract:

Background

The current status of radioiodine-131 (RaI) dosimetry for Graves' hyperthyroidism is not clear. Recurrent hyperthyroidism and iatrogenic hypothyroidism are two problems which interact such that trying to solve one leads to exacerbation of the other. Optimized RaI therapy has therefore begun to be defined just in terms of early hypothyroidism (ablative therapy) as physicians have given up on reducing hypothyroidism.

Methods

Optimized therapy is evaluated both in terms of the greatest separation of cure rate from hypothyroidism rate (non-ablative therapy) or in terms of early hypothyroidism (ablative therapy) by mathematical modeling of outcome after radioiodine and critically discussing the three common methods of RaI dosing for Graves' disease.

Results

Cure follows a logarithmic relationship to activity administered or absorbed dose, while hypothyroidism follows a linear relationship. The effect of including or omitting factors in the calculation of the administered I–131 activity such as the measured thyroid uptake and effective half-life of RaI or giving extra compensation for gland size is discussed.

Conclusions

Very little benefit can be gained by employing complicated methods of RaI dose selection for non-ablative therapy since the standard activity model shows the best potential for cure and prolonged euthyroidism. For ablative therapy, a standard MBq/g dosing provides the best outcome in terms of cure and early hypothyroidism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号