首页 | 本学科首页   官方微博 | 高级检索  
检索        


Transfer of germinal vesicle to ooplasm of young mice could not rescue ageing-associated chromosome misalignment in meiosis of oocytes from aged mice
Authors:Cui Long-Bo  Huang Xiu-Ying  Sun Fang-Zhen
Institution:Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
Abstract:BACKGROUD: Transferring a germinal vesicle (GV) from an aged woman's oocyte into ooplasm from a younger woman has been proposed as a possible way to overcome the problem of age-related decline in female fertility. Here we assessed this possibility by determining whether ooplasts derived from young mice could rescue ageing-associated chromosome misalignment in meiosis of oocytes from aged mice. METHODS: Three groups of reconstructed oocytes, young GV-young cytoplast (group YY), aged GV-young cytoplast (group AY), and young GV-aged cytoplast (group YA), were created by micromanipulation and electrofusion. RESULTS: Nuclear transplantation was successful in 89.8-94.4% of GV-ooplast complexes, and maturation rate of the reconstructed oocytes was 93.5-97.9%. Confocal microscopy analysis showed a significantly higher rate (49.2%) of chromosome misalignment in ageing mice than in young mice (16.9%), and 57.1% of oocytes in group AY exhibited chromosome misalignment, while the abnormality rate in groups YY and YA was 16.3 and 16.7% respectively. Calcium imaging showed that the three groups of reconstructed oocytes exhibited a similar pattern of calcium oscillations upon stimulation with bovine sperm extracts. Fertilization rate and developmental capacity to 2-cell embryos were also similar among the three groups of oocytes. CONCLUSIONS: Our findings suggest that: (i) the ooplasm from young mice could not rescue ageing-associated chromosome misalignment in meiosis of GV from aged mice; and (ii) behaviour of chromosome alignment over metaphase spindle is predominantly determined by GV material.
Keywords:ageing/Ca2+ oscillations/chromosome/germinal vesicle transfer/oocyte
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号