首页 | 本学科首页   官方微博 | 高级检索  
     

不完全病例对照研究基因环境交互作用的估计
引用本文:柏建岭,荀鹏程,赵杨,于浩,沈洪兵,魏庆义,陈峰. 不完全病例对照研究基因环境交互作用的估计[J]. 中华流行病学杂志, 2006, 27(1): 72-75
作者姓名:柏建岭  荀鹏程  赵杨  于浩  沈洪兵  魏庆义  陈峰
作者单位:1. 210029,南京医科大学公共卫生学院流行病与卫生统计学系
2. Department of Epidemiology,University of Texas M D.Anderson Cancer Center,Houston,TX,USA
基金项目:国家重点基础研究发展计划(973)资助(2002CB512910);江苏省高校自然科学基金重点项目资助(04KJB310081)
摘    要:目的 介绍不完全病例对照研究中基因与环境交互作用的估计方法.方法 分别导出了logistic模型、对数线性模型在传统病例对照研究、单纯病例研究、不完全病例对照研究中主效应以及基因与环境交互作用效应的极大似然估计,并通过实例分析其应用价值.结果 在传统病例对照研究中,当数据未缺失时,logistic模型与对数线性模型的结果是等价的.当无对照时,单纯病例研究的logistic模型可以估计基因与环境的交互作用.当对照组基因信息缺失但环境信息齐全时,用传统病例对照研究的logistic模型无法得到交互作用的估计;用单纯病例研究的logistic模型可以估计交互作用,但由于没有充分利用环境的信息,故得不到环境主效应的估计;不完全病例对照研究的对数线性模型,可同时得到交互作用和环境主效应的估计.结论 不完全病例对照研究采用对数线性模型既可充分利用对照的环境暴露信息,估计环境的主效应,又可估计基因与环境的交互作用.当基因与环境暴露独立时,其估计值与完全数据是等价的.

关 键 词:基因-环境交互作用 不完全病例对照研究 对数线性模型 logistic模型
收稿时间:2005-06-09
修稿时间:2005-06-09

Estimation on gene2environment interaction in the partial case2control study
Bai Jianling,Xun Pengcheng,Zhao Yang,Yu Hao,Shen Hongbing,Wei Qingyi and Chen Feng.. Estimation on gene2environment interaction in the partial case2control study[J]. Chinese Journal of Epidemiology, 2006, 27(1): 72-75
Authors:Bai Jianling  Xun Pengcheng  Zhao Yang  Yu Hao  Shen Hongbing  Wei Qingyi  Chen Feng.
Affiliation:Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
Abstract:Objective To introduce the approaches for estimating gene-environment interaction based on partial case-control studies. Methods The effects of logistic model and log-linear model for estimating the main effects and gene-environment interaction effect were estimated by means of maximum likelihood methods in traditional case-control studies, case-only studies and partial case-control studies, respectively. An example was also illustrated. Results In traditional case-control study with complete data,the results of logistic model and log-llnear model were equivalent. In case-only study without any information about controls, the logistic model can also efficiently estimate gene-environment interaction. In partial case-control study, environmental information was collected from all of the cases and controls, while genetic information was only collected from cases. For this case-control study with incomplete data, a suitable parameterized log-linear model could simultaneously and efficiently estimate the main effect of environment and gene-environment interaction, whereas the logistic model could not. Conclusion For a partial case-control study,log-linear model could estimate not only the main effect of environment but also gene-environment interaction. If genotype and exposure were independent, estimators from partial casecontrol were as precisely as those from complete-data case-control studies.
Keywords:Gene-environment interaction   Partial case-control study   Log-linear model   Logistic model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中华流行病学杂志》浏览原始摘要信息
点击此处可从《中华流行病学杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号