Protection From the Second Warm Ischemic Injury in Kidney Transplantation Using an Ex Vivo Porcine Model and Thermally Insulating Jackets |
| |
Authors: | Turaab Khan Jeremy Kwarcinski Tony Pang Ahmer Hameed Philip Boughton Greg O’Grady Wayne J. Hawthorne Natasha M. Rogers Germaine Wong Henry C. Pleass |
| |
Affiliation: | 1. Sydney Medical School, University of Sydney, Sydney, Australia;2. Sydney Pharmacy School, University of Sydney, Sydney, Australia;3. Charles Perkins Centre, University of Sydney, Sydney, Australia;4. Global Surgical Innovations, Sydney Spine Institute, Burwood, Australia;5. Department of Surgery, University of Auckland, Auckland, New Zealand;6. Department of Surgery, Westmead Hospital, Westmead, Australia;7. Westmead Institute for Medical Research, Westmead, Australia;8. Department of Transplant/Renal Medicine, Westmead Hospital, Westmead, Australia |
| |
Abstract: | BackgroundKidney transplantation is the optimum treatment for kidney failure in carefully selected patients. Technical surgical complications and second warm ischemic time (SWIT) increase the risk of delayed graft function (DGF) and subsequent short- and long-term graft outcomes including the need for post-transplant dialysis and graft failure. Intraoperative organ thermal regulation could reduce SWIT, minimizing surgical complications due to time pressure, and limiting graft ischemia-reperfusion injury.MethodsA novel ischemic-injury thermal protection jacket (iiPJ) was designed and fabricated in silicone composite and polyurethane (PU) elastomer prototypes. Both were compared with no thermal insulation as controls. Time to reach ischemic threshold (15°C) and thermal energy transfer were compared. A water bath model was used to examine the thermal protective properties of porcine kidneys, as a feasibility study prior to in vivo translation.ResultsIn both iterations of the iiPJ, the time taken to reach the warm ischemia threshold was 35.2 ± 1.4 minutes (silicone) and 38.4 ± 3.1 minutes (PU), compared with 17.2 ± 1.5 minutes for controls (n = 5, P < .001 for both comparisons). Thermal energy transfer was also found to be significantly less for both iiPJ variants compared with controls. There was no significant difference between the thermal performance of the 2 iiPJ variants.ConclusionProtection from SWIT by using a protective insulation jacket is feasible. With clinical translation, this novel strategy could facilitate more optimal surgical performance and reduce transplanted organ ischemia-reperfusion injury, in particular the SWIT, potentially affecting delayed graft function and long-term outcomes. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|