首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据预处理的贝叶斯网络在中医证候诊断中的应用
引用本文:胡雪琴,周昌乐,张志枫,李长军. 基于数据预处理的贝叶斯网络在中医证候诊断中的应用[J]. 辽宁中医杂志, 2007, 34(12): 1700-1702
作者姓名:胡雪琴  周昌乐  张志枫  李长军
作者单位:上海中医药大学基础医学院,上海,201203;厦门大学人工智能研究所,福建,厦门,361005
摘    要:目的:探讨中医证候诊断模型的建立,寻找证候诊断标准的可行性方法。方法:针对病例样本少,变量维数高的问题,提出先用层次聚类和主成分分析方法对高维变量进行降维,最后利用生成的主成分进行贝叶斯网络学习和分类。结果:通过数据预处理后,贝叶斯网络分类平均正确率达到了88.75%。结论:基于数据预处理的贝叶斯网络用于中医证候诊断的研究是可行的,为进一步的证候研究提供了借鉴。

关 键 词:证候诊断  贝叶斯网络  层次聚类  主成分分析
文章编号:1000-1719(2007)12-1700-03
修稿时间:2007-07-13

Bayesian Network Based on Data Preprocessing Approach to TCM Syndrome Diagnosis
HU Xue-qin,ZHOU Chang-le,ZHANG Zhi-feng,LI Chang-jun. Bayesian Network Based on Data Preprocessing Approach to TCM Syndrome Diagnosis[J]. Liaoning Journal of Traditional Chinese Medicine, 2007, 34(12): 1700-1702
Authors:HU Xue-qin  ZHOU Chang-le  ZHANG Zhi-feng  LI Chang-jun
Abstract:Objective:Discussing the establishment of the model of TCM syndrome diagnosis,providing a feasible method in application of study of TCM syndrome diagnosis criterion.Methods:Considering the problem of few clinical cases and mutildimensional variables,presenting Bayesian network based on data preprocessing in the application of TCM syndrome diagnosis.Combined the methods of hierarchical clustering and principal component analysis to reduce the dimension of mutildimensional variables,finally with the results of principal component analysis,Bayesian network begin to study and classify.Result:Simulation results suggest that TCM syndrome diagnosis model in this paper has high modeling accuracy and reached 88.75% coincidence.Conclusion:It is practical and valid for Bayesian network based on data preprocessing in this paper to be applied to the study of TCM syndrome diagnosis,and will provide much help for the further study.
Keywords:syndrome diagnosis  Bayesian network  hierarchical clustering  principal component analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号