首页 | 本学科首页   官方微博 | 高级检索  
     


Controlling retinal pigment epithelium injury after experimental detachment of the retina
Authors:Iribarne María  Canto-Soler M Valeria  Torbidoni Vanesa  Suburo Angela M
Affiliation:Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina.
Abstract:
PURPOSE: Damage induced by detachment of the neural retina and the retinal pigment epithelium (RPE) can be reduced by dark adaptation. The authors evaluated the influence of the duration of dark adaptation, time of day, and modification of the melatonin-dopamine pathway on acute RPE lesions induced by mechanical detachment. METHODS: BALB/c mice were studied at different times of day and different periods of dark adaptation. Some mice were treated with melatonin or sulpiride, a D2 dopamine receptor antagonist. Enucleated eyes and different saline solutions were used in experiments ex vivo. Retinal detachments in vivo were made by subretinal injections of hyaluronic acid. RPE cell damage was quantitatively evaluated with a dye exclusion procedure, and their viability was tested by preservation of tight junctions in culture. Lectin histochemistry was used to examine the interphotoreceptor matrix (IPM). RESULTS: Significant propidium iodide (PI) incorporation in RPE cells was detected after ex vivo separation during daytime, but it was very low when detachment took place at night after 24 to 48 hours of dark adaptation. PI exclusion was achieved during daytime after a single hour of dark adaptation when mice were pretreated with melatonin or sulpiride. Reduction of RPE cell damage was accompanied by decreased lectin binding to cone sheaths. CONCLUSIONS: A combination of time of day and length of dark adaptation decreased damage induced by detachment of the retina ex vivo and in vivo. Melatonin or sulpiride could replace these environmental factors. Therefore, melatonin and dopamine pathways might be involved in the control of IPM properties and retina/RPE interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号