Endogenous brain Na pumps, brain ouabain-like substance and the alpha2 isoform in salt-dependent hypertension. |
| |
Authors: | James W Van Huysse |
| |
Affiliation: | University of Ottawa Heart Institute and Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1Y 4W7. |
| |
Abstract: | An endogenous ouabain-like substance (OLS) plays a critical role in the etiology of experimental models of human hypertension induced by a high salt diet. Early on, evidence for a role of this Na, K-ATPase inhibitor in blood pressure regulation was provided mainly by correlations of blood pressure with the levels of circulating Na, K-ATPase inhibitor. However, over the past decade, numerous studies have shown that endogenous Na pump inhibitors in the brain mediate salt-dependent hypertension in a variety of experimental models, including Dahl salt-sensitive (Dahl-S) and spontaneously hypertensive (SHR) rats on a high-salt diet. Other forms of hypertension that are known to be mediated by endogenous ouabain-like substances include steroid/salt- (e.g., DOCA-salt) and ACTH-induced hypertension. Even when exogenous ouabain is peripherally administered and/or the plasma ouabain/OLS level is increased in rats, the resulting hypertension is of CNS origin. After peripheral ouabain administration, ouabain levels increase in the plasma and the inhibitor subsequently accumulates in the brain. The ensuing hypertension is abolished by the intracerebroventricular (icv) administration of an anti-ouabain antibody (but not by the same antibody dose given iv), by discrete excitotoxic lesions in the brain or by ganglionic blockade, demonstrating that the response is neurally mediated. The pressor response to stimuli that increase the brain OLS (high salt diet, icv sodium) or to icv ouabain is abolished by icv losartan, demonstrating that the brain OLS activates the brain renin-angiotensin system (RAS) downstream. There are three isoforms of the catalytic alpha subunit of the Na, K-ATPase in the brain and cardiovascular system (alpha1, alpha2 and alpha3), but it is not known which brain isoform(s) mediate the hypertensive effects of circulating/CNS ouabain. Preliminary studies in gene-targeted mice suggest that the alpha2 isoform plays a critical role. |
| |
Keywords: | |
|
|