首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于Bark域能量分布的噪声分类方法
引用本文:袁文浩,林家骏,陈宁,王雨. 一种基于Bark域能量分布的噪声分类方法[J]. 医学教育探索, 2013, 0(4): 472-476
作者姓名:袁文浩  林家骏  陈宁  王雨
作者单位:华东理工大学信息科学与工程学院, 上海 200237;华东理工大学信息科学与工程学院, 上海 200237;华东理工大学信息科学与工程学院, 上海 200237;华东理工大学信息科学与工程学院, 上海 200237
基金项目:国家自然科学基金(60903186,61271349)
摘    要:对不同种类噪声的分类处理,可以提高噪声环境下语音信号处理的性能。为了能够准确地区分各类噪声,提出了一种基于Bark域噪声能量分布特性的噪声分类方法。通过将噪声能量从均匀时频空间映射到Bark空间,构造了一个能够有效区分各种噪声的22维特征向量,并使用支持向量机(SVM)进行模型训练和噪声分类。实验结果表明:所提出的噪声分类方法具有非常高的分类准确率,对用于实验的两种噪声数据集的平均分类准确率分别为99.50%和93.44%。

关 键 词:噪声分类; 支持向量机; Bark域; 能量分布特性
收稿时间:2012-12-05

A Noise Classification Method Based on Noise Energy Distribution in Bark Domain
YUAN Wen-hao,LIN Jia-jun,CHEN Ning and WANG Yu. A Noise Classification Method Based on Noise Energy Distribution in Bark Domain[J]. Researches in Medical Education, 2013, 0(4): 472-476
Authors:YUAN Wen-hao  LIN Jia-jun  CHEN Ning  WANG Yu
Affiliation:School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:By classifying various noises, the performance of the speech signal processing in the noise environments can be improved. In order to accurately distinguish various noises, this paper proposes a noise classification method based on the distribution characteristics of the noise energy in the Bark domain. By mapping the noise energy from the uniform time frequency space to the Bark space, this algorithm constructs a 22 dimensional feature vector that can effectively distinguish various noises. Moreover, the support vector machine (SVM) is utilized to train the model and classify the noises. Experimental results show that the proposed method has very high classification accuracy, and the average accuracies for two noise databases used in the experiments attain 99.50% and 93.44%.
Keywords:noise classification   SVM   Bark domain   energy distribution characteristics
点击此处可从《医学教育探索》浏览原始摘要信息
点击此处可从《医学教育探索》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号