Immunoregulators in the nervous system |
| |
Authors: | C R Plata-Salamán |
| |
Affiliation: | School of Life and Health Sciences, University of Delaware, Newark 19716. |
| |
Abstract: | The nervous system, through the production of neuroregulators (neurotransmitters, neuromodulators and neuropeptides) can regulate specific immune system functions, while the immune system, through the production of immunoregulators (immunomodulators and immunopeptides) can regulate specific nervous system functions. This indicates a reciprocal communication between the nervous and immune systems. The presence of immunoregulators in the brain and cerebrospinal fluid is the result of local synthesis--by intrinsic and blood-derived macrophages, activated T-lymphocytes that cross the blood-brain barrier, endothelial cells of the cerebrovasculature, microglia, astrocytes, and neuronal components--and/or uptake from the peripheral blood through the blood-brain barrier (in specific cases) and circumventricular organs. Acute and chronic pathological processes (infection, inflammation, immunological reactions, malignancy, necrosis) stimulate the synthesis and release of immunoregulators in various cell systems. These immunoregulators have pivotal roles in the coordination of the host defense mechanisms and repair, and induce a series of immunological, endocrinological, metabolical and neurological responses. This review summarizes studies concerning immunoregulators--such as interleukins, tumor necrosis factor, interferons, transforming growth factors, thymic peptides, tuftsin, platelet activating factor, neuro-immunoregulators--in the nervous system. It also describes the monitoring of immunoregulators by the central nervous system (CNS) as part of the regulatory factors that induce neurological manifestations (e.g., fever, somnolence, appetite suppression, neuroendocrine alterations) frequently accompanying acute and chronic pathological processes. |
| |
Keywords: | |
|
|