Site‐directed Mutagenesis of Key Residues Unveiled a Novel Allosteric Site on Human Adenosine Kinase for Pyrrolobenzoxa(thia)zepinone Non‐Nucleoside Inhibitors |
| |
Authors: | Lida Savi Margherita Brindisi Gloria Alfano Stefania Butini Valeria La Pietra Ettore Novellino Luciana Marinelli Andrea Lossani Federico Focher Caterina Cavella Giuseppe Campiani Sandra Gemma |
| |
Affiliation: | 1. Istituto di Genetica Molecolare, CNR, Pavia, Italy;2. Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy;3. European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy;4. Dipartimento di Farmacia, Università di Napoli Federico II, Napoli, Italy |
| |
Abstract: | Most nucleoside kinases, besides the catalytic domain, feature an allosteric domain which modulates their activity. Generally, non‐substrate analogs, interacting with allosteric sites, represent a major opportunity for developing more selective and safer therapeutics. We recently developed a series of non‐nucleoside non‐competitive inhibitors of human adenosine kinase (hAK), based on a pyrrolobenzoxa(thia)zepinone scaffold. Based on computational analysis, we hypothesized the existence of a novel allosteric site on hAK, topographically distinct from the catalytic site. In this study, we have adopted a multidisciplinary approach including molecular modeling, biochemical studies, and site‐directed mutagenesis to validate our hypothesis. Based on a three‐dimensional model of interaction between hAK and our molecules, we designed, cloned, and expressed specific, single and double point mutants of hAK (Q74A, Q78A, H107A, K341A, F338A, and Q74A‐F338A). Kinetic characterization of recombinant enzymes indicated that these mutations did not affect enzyme functioning; conversely, mutated enzymes are endowed of reduced susceptibility to our non‐nucleoside inhibitors, while maintaining comparable affinity for nucleoside inhibitors to the wild‐type enzyme. This study represents the first characterization and validation of a novel allosteric site in hAK and may pave the way to the development of novel selective and potent non‐nucleoside inhibitors of hAK endowed with therapeutic potential. |
| |
Keywords: | adenosine kinase Ala‐scan mutagenesis allosteric binding site allosteric inhibitors drug discovery non‐nucleoside human AK inhibitors small molecule |
|
|