首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进蝙蝠算法的工业控制系统入侵检测
引用本文:李金乐,王华忠,陈冬青. 基于改进蝙蝠算法的工业控制系统入侵检测[J]. 医学教育探索, 2017, 43(5): 662-668
作者姓名:李金乐  王华忠  陈冬青
作者单位:华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237,华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237,中国信息安全测评中心, 北京 100085
摘    要:针对蝙蝠算法(BA)易陷入局部极小的缺点,提出了两点改进:(1)在蝙蝠位置更新时考虑了当前局部最优解分布对算法的影响;(2)将差分进化算法(DE)中的变异操作迁移到蝙蝠算法中,采用随机性变异的方式增加了种群多样性,提升了算法局部搜索能力,并通过典型测试函数验证了本文算法的优越性。将该算法用于工业控制系统(ICS)入侵检测中支持向量机(SVM)分类器的参数优化,使用工控入侵检测标准数据集进行仿真研究。结果表明,与DE、粒子群算法(PSO)和遗传算法(GA)等优化算法相比,其优化的SVM入侵检测模型在检测率、漏报率和误报率等指标上都有显著提升。

关 键 词:改进蝙蝠算法  最优解分布  差分进化算法  支持向量机  工业控制系统  入侵检测
收稿时间:2016-11-15

Intrusion Detection of Industrial Control System Based on Improved Bat Algorithm
LI Jin-le,WANG Hua-zhong and CHEN Dong-qing. Intrusion Detection of Industrial Control System Based on Improved Bat Algorithm[J]. Researches in Medical Education, 2017, 43(5): 662-668
Authors:LI Jin-le  WANG Hua-zhong  CHEN Dong-qing
Affiliation:Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China,Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China and China Information Technology Security Evaluation Center, Beijing 100085, China
Abstract:Aiming at the local minima problem of the standard bat algorithm (BA),this paper makes two improvements.Firstly,the current local optimal solution distribution is considered during the updating of bats'' positions.Secondly,the random variation operation in differential evolution (DE) algorithm is introduced into BA to increase the diversity of the population and enhance the local search ability of the BA algorithm.Besides,the superiority of the proposed algorithm is illustrated by means of typical test functions.Moreover,the proposed algorithm is applied to the parameters optimization of support vector machine (SVM) classifier in industrial control system (ICS) intrusion detection model.The simulation results from the standard dataset for industrial system intrusion detection show that,compared with DE,particle swarm optimization (PSO) and genetic algorithm (GA),the optimized SVM intrusion detection model via the proposed algorithm can effectively improve the detection rate,false negative rate,and false alarm rate.
Keywords:improved bat algorithm  optimal solution distribution  DE  SVM  ICS  intrusion detection
点击此处可从《医学教育探索》浏览原始摘要信息
点击此处可从《医学教育探索》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号