Increased urinary excretion of monocyte chemoattractant protein-1 in proteinuric renal diseases |
| |
Authors: | Morii Tsukasa Fujita Hiroki Narita Takuma Koshimura Jun Shimotomai Takashi Fujishima Hiromi Yoshioka Naomi Imai Hirokazu Kakei Masafumi Ito Seiki |
| |
Affiliation: | Department of Geriatric Medicine, Akita University School of Medicine, Hondo, Akita, Japan. morii@med.akita-u.ac.jp |
| |
Abstract: | Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is produced mainly by tubular epithelial cells in kidney and contributes to renal interstitial inflammation and fibrosis. More recently, we have demonstrated that urinary MCP-1 excretion is increased in proportion to the degree of albuminuria (proteinuria) and positively correlated with urinary N-acetylglucosaminidase (NAG) levels in type 2 diabetic patients. Based on these findings, we have suggested that heavy proteinuria, itself, probably aggravates renal tubular damage and accelerates the disease progression in diabetic nephropathy by increasing the MCP-1 expression in renal tubuli. In the present study, to evaluate whether urinary MCP-1 excretion is increased in the proteinuric states not only in diabetic nephropathy but also in other renal diseases, we examined urinary MCP-1 levels in IgA nephropathy patients with macroalbuminuria (IgAN group; n = 6), and compared the results with the data obtained from type 2 diabetic patients with overt diabetic nephropathy (DN group; n = 23) and those without diabetic nephropathy (non-DN group; n = 27). Urinary MCP-1 excretion levels in non-DN, DN, IgAN groups were 157.2 (52.8-378.5), 346.1 (147.0-1276.7), and 274.4 (162.2-994.5) ng/g creatinine, median (range), respectively. Expectedly, urinary MCP-1 and NAG excretion levels in DN and IgAN groups were significantly elevated as compared with non-DN group. Therefore, we suggest that MCP-1 expression in renal tubuli is enhanced in proteinuric states,irrespective of the types of renal disease, and that increased MCP-1 expression probably contributes to renal tubular damage in proteinuric states. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|