首页 | 本学科首页   官方微博 | 高级检索  
检索        


Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: structural clues for prion propagation
Authors:Kundu Bishwajit  Maiti Nilesh R  Jones Eric M  Surewicz Krystyna A  Vanik David L  Surewicz Witold K
Institution:Department of Physiology and Biophysics, Case Western Reserve University, 3109 Adelbert Road, Cleveland, OH 44106, USA.
Abstract:One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of beta-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of beta-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号