首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue regeneration in vivo within recombinant spidroin 1 scaffolds
Authors:Moisenovich Mikhail M  Pustovalova Olga  Shackelford Julia  Vasiljeva Tamara V  Druzhinina Tatiana V  Kamenchuk Yana A  Guzeev Vitaly V  Sokolova Olga S  Bogush Vladimir G  Debabov Vladimir G  Kirpichnikov Mikhail P  Agapov Igor I
Affiliation:Department of Bioengineering, Lomonosov Moscow State University, Moscow, Russian Federation.
Abstract:One of the major tasks of tissue engineering is to produce tissue grafts for the replacement or regeneration of damaged tissue, and natural and recombinant silk-based polymer scaffolds are promising candidates for such grafts. Here, we compared two porous scaffolds made from different silk proteins, fibroin of Bombyx mori and a recombinant analog of Nephila clavipes spidroin 1 known as rS1/9, and their biocompatibility and degradation behavior in vitro and in vivo. The vascularization and intergrowth of the connective tissue, which was penetrated with nerve fibers, at 8 weeks after subcutaneous implantation in Balb/c mice was more profound using the rS1/9 scaffolds. Implantation of both scaffolds into bone defects in Wistar rats accelerated repair compared to controls with no implanted scaffold at 4 weeks. Based on the number of macrophages and multinuclear giant cells in the subcutaneous area and the number of osteoclasts in the bone, regeneration was determined to be more effective after the rS1/9 scaffolds were implanted. Microscopic examination of the morphology of the matrices revealed differences in their internal microstructures. In contrast to fibroin-based scaffolds, the walls of the rS1/9 scaffolds were visibly thicker and contained specific micropores. We suggest that the porous inner structure of the rS1/9 scaffolds provided a better micro-environment for the regenerating tissue, which makes the matrices derived from the recombinant rS1/9 protein favorable candidates for future in vivo applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号