首页 | 本学科首页   官方微博 | 高级检索  
     


A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy
Authors:Zi-Xian Liao  Yu-Chun LiHsiang-Ming Lu  Hsing-Wen Sung
Affiliation:Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
Abstract:
Photodynamic therapy (PDT) has received considerable attention as a therapeutic treatment for cancer and other diseases; however, it is frequently accompanied by prolonged phototoxic reaction of the skin due to slow clearance of synthetic photosensitizers (PSs) administered externally. This study was designed to investigate the genetic use of pKillerRed-mem, delivered using complexes of chitosan (CS) and poly(γ-glutamic acid) (γPGA), to intracellularly express a membrane-targeted KillerRed protein that can be used as a potential PS for PDT. Following transfection with CS/pKillerRed/γPGA complexes, a red fluorescence protein of KillerRed was clearly seen at the cellular membranes. When exposed to green-light irradiation, the KillerRed-positive cells produced an excessive amount of reactive oxygen species (ROS) in a time-dependent manner. Data from viability assays indicate that ROS have an important role in mediating KillerRed-induced cytotoxicity, apoptosis, and anti-proliferation, suggesting that KillerRed can be used as an intrinsically generated PS for PDT treatments. Notably, the phototoxic reaction of KillerRed toward cells gradually became negligible over time, presumably because of its intracellular degradability. These experimental results demonstrate that this genetically encoded KillerRed is biodegradable and has potential for PDT-induced destruction of diseased cells.
Keywords:Photocytotoxicity   Degradable photosensitizer   Fluorescence protein   Gene therapy   Reactive oxygen species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号