首页 | 本学科首页   官方微博 | 高级检索  
检索        


The Membrane Lipid Cholesterol Modulates Anesthetic Actions on a Human Brain Ion Channel
Authors:Rehberg  Benno MD; Urban  Bernd W PhD; Duch  Daniel S PhD
Abstract:Background: Molecular theories of general anesthesia often are divided into two categories: (l) Anesthetics may bind specifically to proteins, such as ionic channels, and alter their function directly, and (2) anesthetics may alter the functions of integral membrane proteins indirectly through modification of the physical properties of the membrane. Recent studies have provided evidence that anesthetics can bind to proteins and modify their function directly, bringing into question the role of the membrane in anesthetic interactions. To reexamine the role of membrane lipids in anesthetic interactions, an experimental approach was used in which the membrane lipid composition could be systematically altered and the impact on anesthetic interactions with potential targets examined.

Methods: Sodium channels from human brain cortex were incorporated into planar lipid bilayers with increasing cholesterol content. The anesthetic suppression of these channels by pentobarbital was quantitatively examined by single channel measurements under voltage-clamp conditions.

Results: Changes in cholesterol content had no effect on measured channel properties in the absence of anesthetic. In the presence of pentobarbital, however, cholesterol inhibited anesthetic suppression of channel ionic currents, with 1.9% (weight/weight, corresponding to 3.5 mol%) cholesterol decreasing anesthetic suppression of sodium channels by half.

Keywords:
点击此处可从《The Journal of the American Society of Anesthesiologists》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号