首页 | 本学科首页   官方微博 | 高级检索  
     


Trans-synaptically induced bursts in regular spiking non-pyramidal cells in deep layers of the cat motor cortex
Authors:Kang Y  Endo K  Araki T  Kaneko T
Affiliation:Department of Physiology, Faculty of Medicine, Kyoto University, Japan. ykang@med.kyoto-u.ac.jp
Abstract:
In deep layers of the cat motor cortex, we have investigated the properties of neurons displaying trans-synaptically induced bursts. In in vivo experiments, extracellularly recorded burst neurons were separated into two subtypes based on their dependence on stimulation sites, the medullary pyramid or the ventrolateral (VL) thalamic nucleus, from which bursts of 10-20 spikes were triggered. The spike amplitude attenuation and frequency adaptation during a burst were more prominent in pyramid-dependent burst neurons than in VL-dependent burst neurons. Intracellular recordings in in vivo experiments revealed that pyramid-dependent bursts emerged from a long-lasting depolarization, while each spike during a VL-dependent burst was narrow in half-width and was followed by a fast AHP, similar to fast spiking neurons. In in vitro slice experiments, intracellular recordings were obtained from neurons that displayed a burst of attenuated spikes emerging from a long-lasting depolarization, and were also obtained from fast spiking neurons. They were morphologically recovered to be multipolar cells with sparsely spiny dendrites and local axonal networks, suggesting that they are inhibitory interneurons. The multipolar neurons displaying bursts of attenuated spikes may mediate the recurrent inhibition of pyramidal tract cells.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号