Determination of cyanide in blood by isotope-dilution gas chromatography-mass spectrometry |
| |
Authors: | Murphy Karen E Schantz Michele M Butler Therese A Benner Bruce A Wood Laura J Turk Gregory C |
| |
Affiliation: | National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. karen.murphy@nist.gov |
| |
Abstract: | BACKGROUND: Cyanide (CN) is a lethal toxin. Quantification in blood is necessary to indicate exposure from many sources, including food, combustion byproducts, and terrorist activity. We describe an automated procedure based on isotope-dilution gas chromatography-mass spectrometry (ID GC/MS) for the accurate and rapid determination of CN in whole blood. METHODS: A known amount of isotopically labeled potassium cyanide (K13C15N) was added to 0.5 g of whole blood in a headspace vial. Hydrogen cyanide was generated through the addition of phosphoric acid, and after a 5-min incubation, 0.5 mL of the headspace was injected into the GC/MS at an oven temperature of -15 degrees C. The peak areas from the sample, 1H12C14N+, at m/z 27, and the internal standard, 1H13C15N+, at m/z 29, were measured, and the CN concentration was quantified by ID. The analysis time was 15 min for a single injection. RESULTS: We demonstrated method accuracy by measuring the CN content of unfrozen whole blood samples fortified with a known amount of CN. Intermediate precision was demonstrated by periodic analyses over a 14-month span. Relative expanded uncertainties based on a 95% level of confidence with a coverage factor of 2 at CN concentrations of 0.06, 0.6, and 1.5 microg/g were 8.3%, 5.4%, and 5.3%, respectively. The mean deviation from the known value for all concentrations was <4%. CONCLUSION: The automated ID GC/MS method can accurately and rapidly quantify nanogram per gram to microgram per gram concentrations of CN in blood. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|