Assessing liver function using dynamic Gd‐EOB‐DTPA‐enhanced MRI with a standard 5‐phase imaging protocol |
| |
Authors: | Kazuhiro Saito MD Joseph Ledsam BSc Steven Sourbron PhD Jun Otaka MD Yoichi Araki RT Soichi Akata MD Koichi Tokuuye MD |
| |
Affiliation: | 1. Department of Radiology, Tokyo Medical University, Tokyo, Japan;2. Division of Medical Physics, University of Leeds, Leeds, UK |
| |
Abstract: | Purpose: To evaluate liver function obtained by tracer‐kinetic modeling of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data acquired with a routine gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA)‐enhanced protocol. Materials and Methods: Data were acquired from 25 cases of nonchronic liver disease and 94 cases of cirrhosis. DCE‐MRI was performed with a dose of 0.025 mmol/kg Gd‐EOB‐DTPA injected at 2 mL/sec. A 3D breath‐hold sequence acquired 5 volumes of 72 slices each: precontrast, double arterial phase, portal phase, and 4‐minute postcontrast. Regions of interest (ROIs) were selected semiautomatically in the aorta, portal vein, and whole liver on a middle slice. A constrained dual‐inlet two‐compartment uptake model was fitted to the ROI curves, producing three parameters: intracellular uptake rate (UR), extracellular volume (Ve), and arterial flow fraction (AFF). Results: Median UR dropped from 4.46 10?2 min?1 in the noncirrhosis to 3.20 in Child–Pugh A (P = 0.001), and again to 1.92 in Child–Pugh B (P < 0.0001). Median Ve dropped from 6.64 mL 100 mL?1 in the noncirrhosis to 5.80 in Child–Pugh A (P = 0.01). Other combinations of Ve and AFF changes were not significant for any group. Conclusion: UR obtained from tracer kinetic analysis of a routine DCE‐MRI has the potential to become a novel index of liver function. J. Magn. Reson. Imaging 2013;37:1109–1114. © 2012 Wiley Periodicals, Inc. |
| |
Keywords: | tracer‐kinetic modeling perfusion MRI DCE‐MRI liver function Gd‐EOB‐DTPA |
|
|