首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of intelligent core-shell nanoparticles based on poly(D,L-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid).
Authors:Chun-Liang Lo  Ko-Min Lin  Ging-Ho Hsiue
Affiliation:Department of Chemical Engineering, National Tsing Hua University, 101 Section, 2 Kuang Fu Road, Hsinchu, 300 Taiwan, ROC.
Abstract:New thermo-responsive, pH-responsive, and biodegradable nanoparticles comprised of poly(D,L-lactide)-graft-poly(N-isopropyl acrylamide-co-methacrylic acid) (PLA-g-P(NIPAm-co-MAA)) were developed by grafting biodegradable poly(D,L-lactide) onto N-isopropyl acrylamide and methacrylic acid. A core-shell type nano-structure was formed with a hydrophilic outer shell and a hydrophobic inner core, which exhibited a phase transition temperature above 37 degrees C suitable for biomedical application. Upon heating above the phase transition temperature, PLA-g-P(NIPAm-co-MAA) nanoparticle showed a polarity increase of pyrene in either buffer solution or intra-hepato-carcinoma cells as determined by fluorescence measurement, indicating that the structure of nanoparticles caused leakages from outer shell copolymers aggregation and collapsed. The drug loading level of 5-fluorouracil (5-FU) encapsulated in the PLA-g-P(NIPAm-co-MAA) nanoparticles can be as high as 20%. The release of 5-FU from nanoparticles was strongly controlled by the pH in the aqueous solution. Based on these results, PLA-g-P(NIPAm-co-MAA) nanoparticles can be used as a drug carrier for intracellular delivery of anti-cancer drug.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号