Abstract: | The rfb region from Vibrio cholerae O139 strain MO45 was cloned from cosmid gene banks established in Escherichia coli HB101, using an immunoblot assay for screening of the correct clones. Immunoblot analysis of lipopolysaccharide (LPS) preparations revealed the presence of two types of positive clones: (i) those expressing only a short core-linked O polysaccharide (SOPS) and (ii) those also expressing a highly polymerized capsular polysaccharide (CPS) not bound to the E. coli K-12 LPS core. In addition, the latter clones appear to contain a locus which may encode a putative regulator of SOPS and CPS chain length. Further characterization in E. coli showed that CPS constitutes a barrier against large particles such as the bacteriophage Ffm but not against bacteriophage lambda or P1. In addition, a portion of the K-12 LPS core may not be substituted with SOPS. Loci associated with the two clonal types were transferred into V. cholerae CH19, an rfbAB deletion mutant of CVD103-HgR deficient in the production of the homologous Inaba O polysaccharide. This resulted in the stable expression of SOPS, alone or together with CPS, that was indistinguishable from that of wild-type V. cholerae O139. Strains CH25 and CH26, which correspond to CH19 bearing the V. cholerae O139 rfb region integrated into the chromosome, were found to be genetically stable and essentially identical to the parent CVD103-HgR with respect to physiological properties such as cell motility, mercury resistance, toxicity, and production of the cholera toxin B subunit. Rabbits immunized with CH25 elicited high titers of anti-O139 SOPS- and CPS-specific serum antibodies. These strains possess characteristics desirable in candidate live oral vaccines against V. cholerae O139. |