Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition |
| |
Authors: | Ahmed I. Gilani Muhammad O. Chohan Melis Inan Scott A. Schobel Nashid H. Chaudhury Samuel Paskewitz Nao Chuhma Sara Glickstein Robert J. Merker Qing Xu Scott A. Small Stewart A. Anderson Margaret Elizabeth Ross Holly Moore |
| |
Affiliation: | aNew York State Psychiatric Institute, New York, NY, 10032;;bDepartment of Biological Sciences, Columbia University, New York, NY 10027; Departments of;cPsychiatry and;fNeurology, Columbia University, New York, NY 10032; and;dDepartment of Psychiatry and;eFeil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065 |
| |
Abstract: | GABAergic interneuron hypofunction is hypothesized to underlie hippocampal dysfunction in schizophrenia. Here, we use the cyclin D2 knockout (Ccnd2−/−) mouse model to test potential links between hippocampal interneuron deficits and psychosis-relevant neurobehavioral phenotypes. Ccnd2−/− mice show cortical PV+ interneuron reductions, prominently in hippocampus, associated with deficits in synaptic inhibition, increased in vivo spike activity of projection neurons, and increased in vivo basal metabolic activity (assessed with fMRI) in hippocampus. Ccnd2−/− mice show several neurophysiological and behavioral phenotypes that would be predicted to be produced by hippocampal disinhibition, including increased ventral tegmental area dopamine neuron population activity, behavioral hyperresponsiveness to amphetamine, and impairments in hippocampus-dependent cognition. Remarkably, transplantation of cells from the embryonic medial ganglionic eminence (the major origin of cerebral cortical interneurons) into the adult Ccnd2−/− caudoventral hippocampus reverses these psychosis-relevant phenotypes. Surviving neurons from these transplants are 97% GABAergic and widely distributed within the hippocampus. Up to 6 mo after the transplants, in vivo hippocampal metabolic activity is lowered, context-dependent learning and memory is improved, and dopamine neuron activity and the behavioral response to amphetamine are normalized. These findings establish functional links between hippocampal GABA interneuron deficits and psychosis-relevant dopaminergic and cognitive phenotypes, and support a rationale for targeting limbic cortical interneuron function in the prevention and treatment of schizophrenia.Precursors of most γ-aminobutyric acid (GABA)-releasing interneurons of the cerebral cortex and the hippocampus originate in the embryonic medial ganglionic eminence (MGE) (1–3). A subpopulation of MGE-derived cells differentiates into fast-spiking, parvalbumin-expressing (PV+) interneurons that tightly regulate the activity and synchronization of cortical projection neurons (2, 4). Structural and functional deficits in PV+ interneurons are hypothesized as a pathophysiological mechanism in schizophrenia and psychotic disorders (4–6).Although psychotic disorders are clearly heterogeneous in etiology, disinhibition within temporolimbic cortical circuits is postulated as a core pathophysiology underlying positive symptoms (e.g., delusions and hallucinations) and a subset of cognitive disturbances that manifest with psychosis (4, 5, 7). Postmortem studies of brains from individuals with psychotic disorders show reduced molecular markers of the number and/or function of PV+ interneurons in the hippocampus (6, 8). Consistent with these observations, basal metabolic activity in the hippocampus, as measured with functional magnetic resonance imaging (fMRI), is increased in schizophrenia, a phenotype that predicts psychosis and positive symptom severity (5, 7). This abnormal resting activity is postulated to underlie abnormal recruitment of hippocampal circuits during cognitive performance (5, 9). Striatal dopamine (DA) release capacity is also increased and correlated with positive symptoms in schizophrenia and its risk states (10, 11). Importantly, hippocampal hyperactivity may contribute to DA dysregulation (12), because rodent studies show that caudoventral hippocampal (in the primate, anterior hippocampal) efferents regulate the activity of DA neurons and medial striatal DA release (13, 14).Thus, converging evidence implicates hippocampal disinhibition in the abnormal striatal DA transmission and cognitive impairment in schizophrenia. However, the role of hippocampal inhibitory interneurons in psychosis-relevant circuitry remains to be established. To this end, we used the cyclin D2 (Ccnd2) knockout mouse model (15), which displays a relatively selective deficit in cortical PV+ interneurons, and transplantation of interneuron precursors from the MGE to elucidate relationships between reduced hippocampal GABA interneuron function and multiple psychosis-relevant phenotypes, and to explore a novel treatment strategy for psychosis. |
| |
Keywords: | parvalbumin temporal lobe-dependent cognition neural stem cell therapy functional magnetic resonance imaging contextual fear conditioning |
|
|