首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model
Authors:Khan Arshad  Sarkar Dhiman
Affiliation:CombiChem Bio Resource Center, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Abstract:
Nitrate reductase (NR) is found to be expressed in certain mycobacterium sp. whose link with the development of persistence is yet to be resolved. The present study demonstrates the action of selective inhibitors on NR as well as in the survival of Mycobacterium smegmatis using Wayne's model. During gradual shift down to anaerobic stage in Wayne's model, conversion of nitrate to nitrite became apparent in M. smegmatis. More than 97 percent inhibition was observed for the conversion of nitrate to nitrite by azide (0.05 mM) and thiocyanate (20 mM) in both whole-cell as well as its cell-free lysate, respectively. Under identical condition, chlorate (20 mM) inhibited nitrate reduction by 67 and 10 percent, respectively. At these concentrations, neither of azide, thiocyanate nor chlorate had any significant effect on cell growth under aerobic condition. In Wayne's culture model, thiocyanate and chlorate inhibited the growth of M. smegmatis by almost 2 logs at the same concentrations whereas azide inhibited by almost 1.75 log when added at the time of inoculation. Exposure of same culture at 96 h after inoculation in Wayne's model to these inhibitors showed 1.74, 1.95 and 2.37 log inhibition of viable cells with respect to azide, thiocyanate and chlorate. These findings further indicated that NR inhibitors kill the bacilli at anaerobic stage under the experimental condition mentioned. Metronidazole (MTZ) (2 mM) and Nitrofurantoin (NIT) (0.3 mM) reduced the cell number at both stages by <0.7 log. They did not have any effect on NR. Altogether, the results clearly indicate that NR-specific inhibitors could become more promising in killing the bacilli at anaerobic stage than the available conventional drugs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号