首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions between imidazoline compounds and sulphonylureas in the regulation of insulin secretion
Authors:Mirna Mourtada  Colin A Brown  Stephen A Smith  Valerie Piercy  Susan L F Chan  Noel G Morgan
Affiliation:Cellular Pharmacology Group, Department of Biological Sciences, Keele University, Staffs ST5 5BG;*Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, Welwyn, Herts AL6 9AR
Abstract:
  1. Imidazoline α2-antagonist drugs such as efaroxan have been shown to increase the insulin secretory response to sulphonylureas from rat pancreatic B-cells. We have investigated whether this reflects binding to an islet imidazoline receptor or whether α2-adrenoceptor antagonism is involved.
  2. Administration of (±)-efaroxan or glibenclamide to Wistar rats was associated with a transient increase in plasma insulin. When both drugs were administered together, the resultant increase in insulin levels was much greater than that obtained with either drug alone.
  3. Use of the resolved enantiomers of efaroxan revealed that the ability of the compound to enhance the insulin secretory response to glibenclamide resided only in the α2-selective-(+)-enantiomer; the imidazoline receptor-selective-(−)-enantiomer was ineffective.
  4. In vitro, (+)-efaroxan increased the insulin secretory response to glibenclamide in rat freshly isolated and cultured islets of Langerhans, whereas (−)-efaroxan was inactive. By contrast, (+)-efaroxan did not potentiate glucose-induced insulin secretion but (−)-efaroxan induced a marked increase in insulin secretion from islets incubated in the presence of 6 mM glucose.
  5. Incubation of rat islets under conditions designed to minimize the extent of α2-adrenoceptor signalling (by receptor blockade with phenoxybenzamine; receptor down-regulation or treatment with pertussis toxin) abolished the capacity of (+)-and (±)-efaroxan to enhance the insulin secretory response to glibenclamide. However, these manoeuvres did not alter the ability of (±)-efaroxan to potentiate glucose-induced insulin secretion.
  6. The results indicate that the enantiomers of efaroxan exert differential effects on insulin secretion which may result from binding to effector sites having opposite stereoselectivity. Binding of (−)-efaroxan (presumably to imidazoline receptors) results in potentiation of glucose-induced insulin secretion, whereas interaction of (+)-efaroxan with a second site leads to selective enhancement of sulphonylurea-induced insulin release.
Keywords:Endocrine pancreas, efaroxan, glibenclamide, diabetes mellitus, anti-hyperglycaemic drugs, pancreatic β  -cell
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号