首页 | 本学科首页   官方微博 | 高级检索  
     


Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential
Authors:Kränkel Nicolle  Katare Rajesh G  Siragusa Mauro  Barcelos Luciola S  Campagnolo Paola  Mangialardi Giuseppe  Fortunato Orazio  Spinetti Gaia  Tran Nguyen  Zacharowski Kai  Wojakowski Wojciech  Mroz Iwona  Herman Andrew  Manning Fox Jocelyn E  MacDonald Patrick E  Schanstra Joost P  Bascands Jean Loup  Ascione Raimondo  Angelini Gianni  Emanueli Costanza  Madeddu Paolo
Affiliation:Experimental Cardiovascular Medicine, Bristol Heart Institute, UK.
Abstract:Reduced migratory function of circulating angiogenic progenitor cells (CPCs) has been associated with impaired neovascularization in patients with cardiovascular disease (CVD). Previous findings underline the role of the kallikrein-kinin system in angiogenesis. We now demonstrate the involvement of the kinin B2 receptor (B(2)R) in the recruitment of CPCs to sites of ischemia and in their proangiogenic action. In healthy subjects, B(2)R was abundantly present on CD133(+) and CD34(+) CPCs as well as cultured endothelial progenitor cells (EPCs) derived from blood mononuclear cells (MNCs), whereas kinin B1 receptor expression was barely detectable. In transwell migration assays, bradykinin (BK) exerts a potent chemoattractant activity on CD133(+) and CD34(+) CPCs and EPCs via a B(2)R/phosphoinositide 3-kinase/eNOS-mediated mechanism. Migration toward BK was able to attract an MNC subpopulation enriched in CPCs with in vitro proangiogenic activity, as assessed by Matrigel assay. CPCs from cardiovascular disease patients showed low B(2)R levels and decreased migratory capacity toward BK. When injected systemically into wild-type mice with unilateral limb ischemia, bone marrow MNCs from syngenic B(2)R-deficient mice resulted in reduced homing of sca-1(+) and cKit(+)flk1(+) progenitors to ischemic muscles, impaired reparative neovascularization, and delayed perfusion recovery as compared with wild-type MNCs. Similarly, blockade of the B(2)R by systemic administration of icatibant prevented the beneficial effect of bone marrow MNC transplantation. BK-induced migration represents a novel mechanism mediating homing of circulating angiogenic progenitors. Reduction of BK sensitivity in progenitor cells from cardiovascular disease patients might contribute to impaired neovascularization after ischemic complications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号