首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of 2 thione primers and 3 resin adhesives for silver-palladium-copper-gold alloy bonding.
Authors:Yoshikazu Koishi  Naomi Tanoue  Hiroaki Yanagida  Mitsuru Atsuta  Mitsuo Nakamura  Hideo Matsumura
Affiliation:Nagasaki University Hospital of Denistry, Nagasaki, Japan.
Abstract:
OBJECTIVE: The purpose of this study was to evaluate 2 thione primers and 3 resin adhesives for enhancement of bonding strength to a silver-palladium-copper-gold alloy. METHOD AND MATERIALS: Two different sized disk specimens (10- and 8-mm diameter by 2.5-mm thick) were prepared from a silver-palladium-copper-gold alloy (Castwell M.C. 12, GC). The specimens were airborne-particle abraded with 50-microm-grain alumina, conditioned either with a thiouracil primer (Metaltite, Tokuyama Dental) or with a triazine dithione primer (V-Primer, Sun Medical), and then bonded with 1 of 3 acrylic resins: a benzoyl peroxide-amine redox-initiated resin adhesive (Multi-Bond, Tokuyama Dental) or a tri-nbutylborane-initiated resin adhesive (Super-Bond C&B and Super-Bond Quick, Sun Medical). For each adhesive, unprimed specimens were prepared as experimental controls. Shear bond strength was determined after thermocycling (100,000 cycles). RESULTS: Use of primers significantly (P < .05) enhanced the bond strength of specimens in all adhesives. Irrespective of the type of primer, the strength of Multi-Bond adhesive was significantly (P < .05) lower than that of Super-Bond C&B and Super-Bond Quick adhesives. The strength of the 2 tri-n-butylborane-initiated adhesives did not differ significantly (P > .05). The mean strength of the Super-Bond C&B adhesive was 40.4 MPa with Metaltite and 37.8 MPa with V-Primer; that of Super-Bond Quick adhesive was 40.9 MPa with Metaltite and 36.5 MPa with V-Primer. CONCLUSION: Use of thione primers effectively enhanced the strength of the bond to the silver-palladium-copper-gold alloy. Furthermore, the combinations of primers and tri-n-butylborane-initiated adhesives were found to be more efficient for bonding.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号