Abstract: | 目的:筛选膀胱癌预后相关基因,建立膀胱癌预后评分模型。方法:通过UCSC Xena平台下载癌症基因组图谱(TCGA)数据库、基因型和基因表达量关联数据库(GTEx)中406例膀胱癌患者的临床信息和膀胱癌组织RNA测序数据,以及28名健康对照者正常膀胱组织RNA测序数据。采用加权基因共表达网络分析(WGCNA)、单因素Cox回归分析、LASSO回归分析和多因素Cox回归分析筛选膀胱癌预后相关基因并建立预后模型,结合Kaplan-Meier生存曲线、受试者操作特征曲线(ROC曲线)验证模型的准确性。结果:分析得到膀胱癌相关差异表达基因共2308个。WGCNA拟合得到6个基因模块,筛选出对膀胱癌预后有显著作用的基因829个。运用单因素Cox回归与LASSO回归分析筛选出24个与膀胱癌患者预后相关的基因,多因素Cox回归分析训练集数据得到9个作为独立预测因子的基因,分别是 ADCY9、 MAFG_DT、 EMP1、 CAST、 PCOLCE2、 LTBP1、 CSPG4、 NXPH4、 SLC1A6,以此建立膀胱癌患者预后预测模型。训练集中高风险组和低风险组3年存活率分别为31.814%和59.821%,测试集中高风险组和低风险组3年存活率分别为32.745%和68.932%,模型预测训练集和测试集患者预后的ROC曲线下面积均在0.7以上。 结论:本研究建立的模型对膀胱癌高风险和低风险人群的生存情况具有较好的预测能力。 |