首页 | 本学科首页   官方微博 | 高级检索  
     


Enzastaurin (LY317615), a protein kinase Cbeta inhibitor, inhibits the AKT pathway and induces apoptosis in multiple myeloma cell lines
Authors:Rizvi Mujahid A  Ghias Kulsoom  Davies Katharine M  Ma Chunguang  Weinberg Frank  Munshi Hidayatullah G  Krett Nancy L  Rosen Steven T
Affiliation:Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Lurie Building 3-250, 303 East Superior Street, Chicago, IL 60611, USA. m-rizvi@md.northwestern.edu
Abstract:
Enzastaurin (LY317615), an acyclic bisindolylmaleimide, is an oral inhibitor of the protein kinase Cbeta isozyme. The objective of this study was to assess the efficacy of enzastaurin in inducing apoptosis in multiple myeloma (MM) cell lines and to investigate possible mechanisms of apoptosis. Cell proliferation assays were done on a variety of MM cell lines with unique characteristics (dexamethasone sensitive, dexamethasone resistant, chemotherapy sensitive, and melphalan resistant). The dexamethasone-sensitive MM.1S cell line was used to further assess the effect of enzastaurin in the presence of dexamethasone, insulin-like growth factor-I (IGF-I), interleukin-6, and the pan-specific caspase inhibitor ZVAD-fmk. Enzastaurin increased cell death in all cell lines at clinically significant low micromolar concentrations (1-3 micromol/L) after 72 hours of treatment. Dexamethasone and enzastaurin were shown to have an additive effect on MM.1S cell death. Although IGF-I blocked the effect of 1 micromol/L enzastaurin, IGF-I did not abrogate cell death induced with 3 mumol/L enzastaurin. Moreover, enzastaurin-induced cell death was not affected by interleukin-6 or ZVAD-fmk. GSK3beta phosphorylation, a reliable pharmacodynamic marker for enzastaurin activity, and AKT phosphorylation were both decreased with enzastaurin treatment. These data indicate that enzastaurin induces apoptosis in MM cell lines in a caspase-independent manner and that enzastaurin exerts its antimyeloma effect by inhibiting signaling through the AKT pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号