首页 | 本学科首页   官方微博 | 高级检索  
     


Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries
Authors:Ivana Y Kuo   Anthie Ellis   Victoria AL Seymour   Shaun L Sandow   Caryl E Hill
Affiliation:1Neuroscience Program, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia;2Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
Abstract:
Although dihydropyridines are widely used for the treatment of vasospasm, their effectiveness is questionable, suggesting that other voltage-dependent calcium channels (VDCCs) contribute to control of cerebrovascular tone. This study therefore investigated the role of dihydropyridine-insensitive VDCCs in cerebrovascular function. Using quantitative PCR and immunohistochemistry, we found mRNA and protein for L-type (CaV1.2) and T-type (CaV3.1 and CaV3.2) channels in adult rat basilar and middle cerebral arteries and their branches. Immunoelectron microscopy revealed both L- and T-type channels in smooth muscle cell (SMC) membranes. Using patch clamp electrophysiology, we found that a high-voltage-activated calcium current, showing T-type channel kinetics and insensitivity to nifedipine and nimodipine, comprised ∼20% of current in SMCs of the main arteries and ∼45% of current in SMCs from branches. Both components were abolished by the T-type antagonists mibefradil, NNC 55-0396, and efonidipine. Although nifedipine completely blocked vasoconstriction in pressurized basilar arteries, a nifedipine-insensitive constriction was found in branches and this increased in magnitude as vessel size decreased. We conclude that a heterogeneous population of VDCCs contributes to cerebrovascular function, with dihydropyridine-insensitive channels having a larger role in smaller vessels. Sensitivity of these currents to nonselective T-type channel antagonists suggests that these drugs may provide a more effective treatment for therapy-refractory cerebrovascular constriction.
Keywords:arterial size   calcium channels   cerebral vasoconstriction   dihydropyridines   T-type channels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号