首页 | 本学科首页   官方微博 | 高级检索  
     

基于人体血液常/微量元素含量的SVM癌症辅助诊断
引用本文:袁前飞,蔡从中,肖汉光,刘兴华,温玉锋,孔春阳. 基于人体血液常/微量元素含量的SVM癌症辅助诊断[J]. 生物医学工程学杂志, 2007, 24(3): 513-518
作者姓名:袁前飞  蔡从中  肖汉光  刘兴华  温玉锋  孔春阳
作者单位:1. 重庆大学,应用物理系,重庆,400044
2. 重庆师范大学,物理学与信息技术学院,重庆,400047
基金项目:重庆大学与新加坡国立大学国际联合科研项目;重庆市自然科学基金;重庆大学校科研和教改项目
摘    要:支持向量机(Support vector machine,SVM)分类方法在实际二类分类问题的应用中显示出良好的学习和泛化能力,已被广泛地应用于许多研究领域。我们以癌症病人血液中6种元素(Ba,Ca,Cu,Mg,Se,Zn)的含量为研究对象,将SVM、最近邻法、决策树C4.5及人工神经网络等方法用于癌症病人和正常人的分类研究。研究表明:除C4.5的分类准确率保持不变之外,对数据的归一化处理能够提高SVM、KNN、ANN的分类效果。当使用线性核函数时,SVM通过5次交叉验证的最优平均分类准确率达到了95.95%,优于KNN(93.24%)、C4.5(79.93%)及ANN(94.59%)等分类器,表明该方法有望成为一种实用的癌症临床辅助诊断手段。

关 键 词:支持向量机  常量元素  微量元素  癌症诊断
修稿时间:2005-12-152006-09-05

SVM-aided Cancer Diagnosis Based on the Concentration of the Macroelement and Microelement in Human Blood
Yuan Qianfei,Cai Congzhong,Xiao Hanguang,Liu Xinghua,Wen Yufeng,Kong Chunyang. SVM-aided Cancer Diagnosis Based on the Concentration of the Macroelement and Microelement in Human Blood[J]. Journal of biomedical engineering, 2007, 24(3): 513-518
Authors:Yuan Qianfei  Cai Congzhong  Xiao Hanguang  Liu Xinghua  Wen Yufeng  Kong Chunyang
Affiliation:1.Department of Applied Physics, Chongqing University, Chongqing 400044, China;2. Collegeof Physics and Information Technology, Chongqing Normal University, Chongqing 400047, China
Abstract:Support vector machine(SVM)has shown its excellent learning and generalization ability for the binary classification of real problems and has been extensively employed in many areas.In this paper,SVM,K-Nearest Neighbor,Decision Tree C4.5 and Artificial Neural Network were applied to identify cancer patients and normal individuals using the concentrations of 6 elements including macroelements(Ca,Mg)and microelements(Ba,Cu,Se,Zn)in human blood.It was demonstrated,by using the normalized features instead of the original features,the classification performances can be improved from 91.89% to 95.95%,from 83.78% to 93.24%,and from 90.54% to 94.59% for SVM,K-NN and ANN respectively,whereas that of C4.5 keeps unchangeable.The best average accuracy of SVM with linear dot kernel by using 5-fold cross validation reaches 95.95%,and is superior to those of other classifiers based on K-NN(93.24%),C4.5(79.73%),and ANN(94.59%).The study suggests that support vector machine is capable of being used as a potential application methodology for SVM-aided clinical cancer diagnosis.
Keywords:Support vector machine(SVM)Macroelement Microelement Cancer diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号