Abstract: | A disintegrin-like metalloproteinase with thrombospondin motifs–16 (Adamts16) is an important candidate gene for hypertension. The goal of the present study was to further assess the candidacy of Adamts16 by targeted disruption of this gene in a rat genetic model of hypertension. A rat model was generated by manipulating the genome of the Dahl Salt–sensitive (S) rat using zinc-finger nucleases, wherein the mutant rat had a 17 bp deletion in the first exon of Adamts16, introducing a stop codon in the transcript. Systolic blood pressure (BP) of the homozygous Adamts16mutant rats was lower by 36 mmHg compared with the BP of the S rats. The Adamts16mutant rats exhibited significantly lower aortic pulse wave velocity and vascular media thickness compared with S rats. Scanning electron and fluorescence microscopic studies indicated that the mechanosensory cilia of vascular endothelial cells from the Adamts16mutant rats were longer than that of the S rats. Furthermore, Adamts16mutant rats showed splitting and thickening of glomerular capillaries and had a longer survival rate, compared with the S rats. Taken together, these physiological observations functionally link Adamts16 to BP regulation and suggest the vasculature as the potential site of action of Adamts16 to lower BP. |