首页 | 本学科首页   官方微博 | 高级检索  
     


Cluster significance testing using the bootstrap
Authors:Auffermann William F  Ngan Shing-Chung  Hu Xiaoping
Affiliation:Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis 55455, USA.
Abstract:
Many of the statistical methods currently employed to analyze fMRI data depend on a response template. However, the true form of the hemodynamic response, and thereby the response template, is often unknown. Consequently, cluster analysis provides a complementary, template-free method for exploratory analysis of multidimensional fMRI data sets. Clustering algorithms currently being applied to fMRI data separate the data into a predefined number of clusters (k). A poor choice of k will result in erroneously partitioning well-defined clusters. Although several clustering algorithms have been successfully applied to fMRI data, techniques for statistically testing cluster separation are still lacking. To address this problem we suggest a method based on Fisher's linear discriminant and the bootstrap. Also introduced in this paper is a measure based on the projection of multidimensional data from two clusters onto the vector, maximizing the ratio of the between- to the within-cluster sums of squares. The resulting one-dimensional distribution may be readily visualized and used as a heuristic for estimating cluster homogeneity. These methods are demonstrated for the self-organizing maps clustering algorithm when applied to event-related fMRI data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号