首页 | 本学科首页   官方微博 | 高级检索  
     

随机时间序列分析法在传染病预测中的应用
引用本文:王春平,王志锋,单杰,王笑男. 随机时间序列分析法在传染病预测中的应用[J]. 中国医院统计, 2006, 13(3): 229-232
作者姓名:王春平  王志锋  单杰  王笑男
作者单位:1. 100005,中国医学科学院基础医学研究所/中国协和医科大学基础医学院;潍坊医学院
2. 北京大学
3. 潍坊市卫生局
4. 潍坊医学院
摘    要:
目的阐述ARIMA模型拟合时间序列的方法和步骤,并将其应用于乙型肝炎的预测,为传染病预警系统提供决策依据。方法利用SPSS统计软件求解适宜的ARIMA模型,据所得误差评价预测效果。结果通过对乙型肝炎发病率的预测,相对误差在15%左右,预测效果较为可靠。结论在乙型肝炎的近期预测中引入时间序列的ARIMA模型分析方法,能够对传染病的预测产生积极的指导意义。

关 键 词:ARIMA模型  时间序列  乙型肝炎
文章编号:1006-5253(2006)03-0229-04
修稿时间:2006-02-07

Application in infectious disease forecasting by ARIMA model
WANG Chun-ping,WANG Zhi-feng,SHAN Jie,et al.. Application in infectious disease forecasting by ARIMA model[J]. Chinese Journal of Hospital Statistics, 2006, 13(3): 229-232
Authors:WANG Chun-ping  WANG Zhi-feng  SHAN Jie  et al.
Affiliation:WANG Chun-ping,WANG Zhi-feng,SHAN Jie,et al. Fundamental Medical Institute of Chinese Medical Science Academy,Beijing,100005 and Wefang Medical College,Shandong,261042
Abstract:
Objective The approach and procedure to fit time series with ARIMA models are discussed briefly. The application to forecast hepatitis B is given to help infectious diseases forecasting system. Methods Proper ARIMA model is obtained with SPSS system and the effectiveness is evaluated. Results The error of prediction to hepatitis B is around 15%, which show a satisfactory effectiveness. Conclusion It is both necessary and practical to apply the approach of ARIMA model in fitting time series to predict hepatitis B with a short lead time.
Keywords:ARIMA model Time series Hepatitis B
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号