首页 | 本学科首页   官方微博 | 高级检索  
检索        


Metabolite selection for machine learning in childhood brain tumour classification
Authors:Dadi Zhao  James T Grist  Heather EL Rose  Nigel P Davies  Martin Wilson  Lesley MacPherson  Laurence J Abernethy  Shivaram Avula  Barry Pizer  Daniel R Gutierrez  Tim Jaspan  Paul S Morgan  Dipayan Mitra  Simon Bailey  Vijay Sawlani  Theodoros N Arvanitis  Yu Sun  Andrew C Peet
Institution:1. Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK;2. Centre for Human Brain Health, University of Birmingham, Birmingham, UK;3. Radiology, Birmingham Children's Hospital, Birmingham, UK;4. Radiology, Alder Hey Children's Hospital, Liverpool, UK;5. Paediatric Oncology, Alder Hey Children's Hospital, Liverpool, UK;6. Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK

Medical Physics, Nottingham University Hospitals NHS Trust, Nottingham, UK;7. Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK;8. Neuroradiology, The Newcastle upon Tyne Hospitals, Newcastle upon Tyne, UK;9. Paediatric Oncology, Great North Children's Hospital, Newcastle upon Tyne, UK;10. Radiology, Queen Elizabeth Hospital Birmingham, Birmingham, UK

Abstract:MRS can provide high accuracy in the diagnosis of childhood brain tumours when combined with machine learning. A feature selection method such as principal component analysis is commonly used to reduce the dimensionality of metabolite profiles prior to classification. However, an alternative approach of identifying the optimal set of metabolites has not been fully evaluated, possibly due to the challenges of defining this for a multi-class problem. This study aims to investigate metabolite selection from in vivo MRS for childhood brain tumour classification. Multi-site 1.5 T and 3 T cohorts of patients with a brain tumour and histological diagnosis of ependymoma, medulloblastoma and pilocytic astrocytoma were retrospectively evaluated. Dimensionality reduction was undertaken by selecting metabolite concentrations through multi-class receiver operating characteristics and compared with principal component analysis. Classification accuracy was determined through leave-one-out and k-fold cross-validation. Metabolites identified as crucial in tumour classification include myo-inositol (P < 0.05, ?,?AUC=0.81±0.01), total lipids and macromolecules at 0.9 ppm (P < 0.05, ?,?AUC=0.78±0.01) and total creatine (P < 0.05, ?,?AUC=0.77±0.01) for the 1.5 T cohort, and glycine (P < 0.05, ?,?AUC=0.79±0.01), total N-acetylaspartate (P < 0.05, ?,?AUC=0.79±0.01) and total choline (P < 0.05, ?,?AUC=0.75±0.01) for the 3 T cohort. Compared with the principal components, the selected metabolites were able to provide significantly improved discrimination between the tumours through most classifiers (P < 0.05). The highest balanced classification accuracy determined through leave-one-out cross-validation was 85% for 1.5 T 1H-MRS through support vector machine and 75% for 3 T 1H-MRS through linear discriminant analysis after oversampling the minority. The study suggests that a group of crucial metabolites helps to achieve better discrimination between childhood brain tumours.
Keywords:childhood brain tumour  machine learning  metabolite concentration  MRS  multi-class classification  receiver operating characteristics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号