首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative metabolism and pharmacokinetics of diisobutyl ketone and diisobutyl carbinol in male SD rats
Authors:Fagen Zhang  Michael J. BartelsAmy J. Clark  Jen L. StaleyTom S. Lardie  Dan A. MarkhamBrian J. Hughes  Nicholas S. Ball
Affiliation:Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, MI 48674, USA
Abstract:
Diisobutyl ketone (DIBK) and diisobutyl carbinol (DIBC) are important organic solvents widely used as industrial intermediates. It was hypothesized that DIBC and DIBK have common metabolic pathways and metabolites, and as such, toxicological data on DIBK could be used to characterize the hazards of DIBC. To confirm or refute this hypothesis a comparative metabolism and pharmacokinetics assessment of DIBK and DIBC was conducted. Dosing was via single oral gavage dosing in male SD rats, followed by blood collection, metabolite identification, major biomarker quantitation, and pharmacokinetics analysis. Overall, the major metabolites of both DIBC and DIBK in blood were their corresponding monohydroxylated metabolites (DIBC alcohol and DIBK alcohol) with the site of hydroxylation at the σ and σ-1 positions, respectively. Quantitative analysis of DIBC, DIBK, DIBC-alcohol, and DIBK-alcohol in blood samples collected from 5 min to 120 h after single dosing indicated the following: (1) DIBC and DIBK are both well absorbed following oral gavage with substantial evidence of enterohepatic recirculation of DIBK, DIBC, DIBK-alcohol, and DIBC-alcohol; (2) DIBK and DIBC are interconverted metabolically in rats; (3) DIBC and DIBK have similar bioavailability after oral administration; (4) higher systemic exposure was found for DIBK-alcohol than DIBC-alcohol, implying that DIBC-alcohol may be more easily conjugated and eliminated in bile. In summary, the metabolic similarities and the difference in systemic exposure to metabolites between these substances observed in the current study support the hypothesis that DIBC might have a lower potential toxicity than that of DIBK. The current study results support that toxicological data on DIBK could be used to characterize the hazards of DIBC
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号