首页 | 本学科首页   官方微博 | 高级检索  
     


L-citrulline Prevents Alveolar and Vascular Derangement in a Rat Model of Moderate Hyperoxia-induced Lung Injury
Authors:Davide Grisafi  Evelyne Tassone  Arben Dedja  Barbara Oselladore  Valentina Masola  Vincenza Guzzardo  Andrea Porzionato  Roberto Salmaso  Giovanna Albertin  Carlo Artusi  Martina Zaninotto  Maurizio Onisto  Anna Milan  Veronica Macchi  Raffaele De Caro  Ambrogio Fassina  Michela Alfiero Bordigato  Lino Chiandetti  Marco Filippone  Patrizia Zaramella
Affiliation:Neonatal Intensive Care Unit, Department of Pediatrics, University of Padova, Padova, Italy.
Abstract:

Background

Moderate normobaric hyperoxia causes alveolar and vascular lung derangement in the newborn rat. Endogenous nitric oxide (NO), which promotes lung growth, is produced from the metabolism of l-arginine to l-citrulline in endothelial cells. We investigated whether administering l-citrulline by raising the serum levels of l-arginine and enhancing NO endogenous synthesis attenuates moderate hyperoxia-induced lung injury.

Methods

Newborn rats were exposed to FiO2?=?0.6 or room air for 14?days to induce lung derangement and then were administered l-citrulline or a vehicle (sham). Lung histopathology was studied with morphometric features. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis. Lung vascular endothelial growth factor (VEGF), nitric oxide synthase (eNOS), and matrix metalloproteinase 2 (MMP2) gene and protein expressions were assessed.

Results

Serum l-arginine rose in the L-citr?+?hyperoxia group (p?=?0.05), as well as the Von Willebrand factor stained vessels count (p?=?0.0008). Lung VEGF immune staining, localized on endothelial cells, was weaker in the sections under hyperoxia than the l-citr?+?hyperoxia and room air groups. This pattern was comparable with the VEGF gene and protein expression profiles. Mean alveolar size increased in the untreated hyperoxia and sham-treated groups compared with the groups reared in room air or treated with l-citrulline under exposure to hyperoxia (p?=?0.0001). Lung VEGF and eNOS increased in the l-citrulline-treated rats, though this treatment did not change MMP2 gene expression but regulated the MMP2 active protein, which rose in BALF (p?=?0.003).

Conclusions

We conclude that administering l-citrulline proved effective in improving alveolar and vascular growth in a model of oxygen-induced pulmonary damage, suggesting better lung growth and matrix regulation than in untreated groups.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号