首页 | 本学科首页   官方微博 | 高级检索  
     


Potassium channel blockers and openers as CNS neurologic therapeutic agents
Authors:Judge Susan I V  Smith Paul J  Stewart Peggy E  Bever Christopher T
Affiliation:Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. sjudge@umaryland.edu
Abstract:
Potassium (K+) channels are the most heterogeneous and widely distributed class of ion channels. K(+) channels are dynamic pore-forming transmembrane proteins known to play important roles in all cell types underlying both normal and pathophysiological functions. Essential for such diverse physiological processes as nerve impulse propagation, muscle contraction, cellular activation and the secretion of biologically active molecules, various K(+) channels are recognized as potential therapeutic targets in the treatment of multiple sclerosis, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, brain tumors, brain/spinal cord ischemia, pain and schizophrenia, migraine, as well as cardiac arrhythmias, pulmonary hypertension, diabetes, cervical cancer, urological diseases and sepsis. In addition to their importance as therapeutic targets, certain K(+) channels are gaining attention for their beneficial roles in anesthesia, neuroprotection and cardioprotection. The K(+) channel gene families (subdividing into multiple subfamilies) include voltage-gated (K(v): K(v)1-K(v)12 or KCNA-KCND, KCNF-KCNH, KCNQ, KCNS), calcium-activated (K(Ca): K(Ca)1-K(Ca)5 or KCNM-KCNN), inwardly rectifying (K(ir): K(ir)1-K(ir)7 or KCNJ) and background/leak or tandem 2-pore (K(2P): K(2P)1-K(2P)7, K(2P)9-K(2P)10, K(2P)12-K(2P)13, K(2P)15-K(2P)18 or KCNK) K(+) channels. Worldwide, the pharmaceutical industry is actively developing better strategies for targeting ion channels, in general, and K(+) channels, in particular, already generating over $6 billion in sales per annum from drugs designed to block or modulate ion channel function. This review provides an overview of recent patents on emerging K(+) channel blockers and activators (openers) with potential for development as new and improved nervous system therapeutic agents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号