首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans
Authors:Basant K Puri  Serena J Counsell  Brian M Ross  Gavin Hamilton  Marcelo G Bustos  Ian H Treasaden
Affiliation:MRI Unit, MRC Clinical Sciences Centre, Imaging Sciences Department, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK. basant.puri@csc.mrc.ac.uk
Abstract:

Background

This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder.

Methods

Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm3 voxel). The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra.

Results

The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (r s = 0.714, p < 0.05).

Conclusion

Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号