首页 | 本学科首页   官方微博 | 高级检索  
     

台湾35~74岁男性体检者骨质疏松5年发病风险预测模型
引用本文:孙凤 郁凯 陶庆梅 陶秋山 杨兴华 曹纯铿 詹思延. 台湾35~74岁男性体检者骨质疏松5年发病风险预测模型[J]. 中国骨质疏松杂志, 2012, 0(10): 905-911
作者姓名:孙凤 郁凯 陶庆梅 陶秋山 杨兴华 曹纯铿 詹思延
作者单位:100191北京,北京大学公卫学院流行病与卫生统计学系(孙凤、陶庆梅、陶秋山、詹思延);100191北京,北京大学药学院药事管理与临床药学系(孙凤);832003石河子,新疆石河子大学医学院预防医学系(孙凤);300450天津,天津市第五中心医院骨科(郁凯);100069北京,首都医科大学公共卫生与家庭医学学院(杨兴华);110 台湾,美兆健康管理机构(曹纯铿)
摘    要:目的 构建台湾35~74岁男性体检者骨质疏松(OP)5年发病风险(个体化)预测模型。方法 选择1999~2005年首次参加台湾美兆健检的35~74岁男性体检者7801人,去除基线患OP者505人后余下7296人,将4个体检中心分为建模队列(台北中心,n=3844),余下3中心为验证队列(n=3452)。按建模队列5年后是否发生OP为因变量,以该队列基线指标为自变量在进行单变量分析后,建立多元逐步Logistic回归模型,以ROC曲线下的面积(AUC)为判定预测模型拟合优度的主要指标,用验证队列对模型的外部效度进行评估。模型建立后,将人群的预测风险概率正态化后再转化为可实际应用操作的4个风险等级。结果 基线4个体检中心OP患病率范围为4.77%~7.88%。去除基线患者后,全部受检者5年发病率为2.34%(171/7296),4个中心OP发病率范围为:1.52%~4.89%。多变量Logistic回归构建的预测模型包括年龄、日常工作性质、腰围、体重和血肌酐水平5个指标。建模队列建立的预测模型的ROC曲线下面积(AUC)约为0.728 (95%CI:0.675-0.772) ,验证队列外部效度验证结果为0.698(0.633-0.762)。将建模队列划分为4个风险等级后,显示中危(占11.9%)和高危(占1.1%)的个体5年内发生OP的危险分别比一般人群高2.4倍和8.1倍。结论 利用台湾美兆健检纵向数据资料建立的OP 5年个体风险预测模型效应与信度均较高,且纳入的预测变量和建立的风险等级评价标准简单实用,因此对于今后无论个体进行自身OP风险评价还是社区工作者对社群人群进行OP监测均具有较大的应用价值。

关 键 词:骨质疏松,Logistic 模型,风险预测模型,纵向数据,健检,数据挖掘

Risk predicting model of 5-year osteoporosis occurrence in 35-74-year-old males in Taiwan
SUN Feng,YU Kai,TAO Qingmei,et al.. Risk predicting model of 5-year osteoporosis occurrence in 35-74-year-old males in Taiwan[J]. Chinese Journal of Osteoporosis, 2012, 0(10): 905-911
Authors:SUN Feng  YU Kai  TAO Qingmei  et al.
Affiliation:1Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191; 2Department of Orthopedics, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
Abstract:Objective To build a risk predicting model of 5-year osteoporosis (OP) occurrence in 35-74-year-old males in Taiwan. Methods A total of 7081 individuals who received health check-up in Taiwan MJ Health Administration Organization for the first time from 1999 to 2005 were selected. After excluding 505 individuals who were OP patients at baseline, 7296 subjects were enrolled. Four health check-up centers were selected as the modeling cohort (Taipei center, n=3844), and the left 3 centers were selected as the testing cohort (n=3452). Multivariate logistic regression model was established based on an univariate model with variables that predicted OP incidence in 5 years and with variables that appeared on baseline. We evaluated model predictability by the area under the receiver-operating characteristic (ROC) curve (AUC) and testified its diagnostic property on the testing sample. Once final model was defined, we next established rules to characterize 4 different degrees of the risk based on cut points of these probabilities after transforming into normal distribution by log-transformation. Results At baseline, the range of OP prevalence was 4.77-7.88% in 4 check-up centers. After excluding 505 OP individuals at baseline, the incidence of OP was 2.34% (171/7296). The range of incidence was 1.52-4.89% in 4 check-up centers. Final multivariable logistic regression model included 5 risk factors: age, routine work status, waist circumference, weight, and serum creatinine. The AUC of the model consisted of modeling cohort was 0.728 (95% CI, 0.675-0.772). The AUC of testing cohorts was 0.698 (95% CI, 0.633-0.762). After labeling 4 risk degrees in modeling cohort, the risks of developing OP for subjects in moderate risk degree (11.9% of all subjects) and high risk degree (1.1% of all subjects) were 2.4 times and 8.1 times higher than those of general population, respectively. Conclusion The predictability and reliability of the model of estimated risks on developing OP within 5 years, which is based on Taiwan MJ longitudinal check-up population database, are good and satisfied. The predictive variables involved and the evaluation criterions to establish the risk degrees are simple and practicable. It will be helpful both for individual to assess the risk on developing OP and for community workers to survey the development of OP in community population.
Keywords:Osteoporosis   Logistic regression model   Risk predictive model   Longitudinal data   Check-up   Data mining
点击此处可从《中国骨质疏松杂志》浏览原始摘要信息
点击此处可从《中国骨质疏松杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号