Clinical evaluation of PET image reconstruction using a spatial resolution model |
| |
Authors: | Flemming Littrup Andersen,Thomas Levin Klausen,Annika Loft,Thomas Beyer,Sø ren Holm |
| |
Affiliation: | 1. Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark;2. cmi-experts GmbH, Zurich, Switzerland |
| |
Abstract: |
PurposePET image resolution is variable across the measured field-of-view and described by the point spread function (PSF). When accounting for the PSF during PET image reconstruction image resolution is improved and partial volume effects are reduced. Here, we evaluate the effect of PSF-based reconstruction on lesion quantification in routine clinical whole-body (WB) PET/CT imaging.Materials and methods41 oncology patients were referred for a WB-PET/CT examination (Biograph 40 TruePoint). Emission data were acquired at 2.5 min/bed at 1 h pi of 400 MBq [18F]-FDG. Attenuation-corrected PET images were reconstructed on 336 × 336-matrices using: (R1) standard AW-OSEM (4 iter, 8 subsets, 4 mm Gaussian) and (R2) AW-OSEM with PSF (3 iter, 21 subsets, 2 mm). Blinded and randomised reading of R1- and R2-PET images was performed. Individual lesions were located and counted independently on both sets of images. The relative change in PET quantification (SUVmax, SUVmean, volume) of lesions seen on R1 and R2 is reported as (R2 − R1)/R1. Furthermore, SUVmax and SUVmean was measured for a 3 cm spherical norm region in the right lobe of the healthy liver for R1 and R2.ResultsClinical reading revealed 91 and 103 positive lesions for R1 and R2, respectively. For all lesions SUVmax (R2) was higher than SUVmax (R1). Regression analysis indicated that the relative increase in SUVmax (and SUVmean) decreased with lesion size, whilst it increased with increasing radial distance from the centre of the field of view (FOV). There was no significant difference in SUVmean in homogenous liver tissue between R1 and R2.ConclusionIn whole-body FDG-PET/CT using routine clinical protocols, PSF-based PET reconstruction increases lesion detection and affects SUVmax measurements compared to standard AW-OSEM PET reconstruction. |
| |
Keywords: | Positron emission tomography PET/CT Spatial resolution Point spread function Image reconstruction |
本文献已被 ScienceDirect 等数据库收录! |
|