首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacological regulation of the insulin receptor signaling pathway mimics insulin action in cells transduced with viral vectors
Authors:Cotugno Gabriella  Pollock Roy  Formisano Pietro  Linher Katja  Beguinot Francesco  Auricchio Alberto
Affiliation:Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy.
Abstract:
Diabetes mellitus derives from either insulin deficiency (type I) or resistance (type II). Homozygous mutations in the insulin receptor (IR) gene cause the rare leprechaunism and Rabson-Mendenhall syndromes, severe forms of hyperinsulinemic insulin resistance for which no therapy is currently available. Systems have been developed that allow protein-protein interactions to be brought under the control of small-molecule dimerizer drugs. As a potential tool to rescue glucose homeostasis at will in both insulin and insulin receptor deficiencies, we developed a recombinant chimeric insulin receptor (LFv2IRE) that can be homodimerized and activated by the small-molecule dimerizer AP20187. In HepG2 cells transduced with adeno-associated viral (AAV) vectors encoding LFv2IRE, AP20187 induces LFv2IRE homodimerization and transphosphorylation minutes after drug administration, resulting in the phosphorylation of a canonical substrate of the insulin receptor tyrosine kinase, IRS-1. AP20187 activation of LFv2IRE is dependent on the dose of drug and the amount of chimeric receptor expressed in AAV-transduced cells. Finally, AP20187-dependent activation of LFv2IRE results in insulin-like effects, such as induction of glycogen synthase activity and cellular proliferation. In vivo LFv2IRE transduction of insulin target tissues followed by AP20187 dosing may represent a therapeutic strategy to be tested in animal models of insulin resistance due to insulin receptor deficiency or of type I diabetes. This system may also represent a useful tool to dissect in vivo the independent contribution of insulin target tissues to hormone action.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号