首页 | 本学科首页   官方微博 | 高级检索  
     


Sodium channels in ocular epithelia
Authors:Mitchell A. Watsky  Kim Cooper  James L. Rae
Affiliation:(1) Department of Physiology and Biophysics, Room 93 U Guggenheim, and Department of Ophthalmology, Mayo Foundation, 55905 Rochester, MN, USA
Abstract:
Voltage-gated, tetrodotoxin(TTX)-blockable sodium channels are found in most excitable cells and are the primary contributors to action potentials generated by many of these cells. To date, there has only been one report of a non-cultured vertebrate epithelial cell type containing TTX-blockable Na+ channels: rabbit non-pigmented ciliary body epithelial cells [Cilluffo MC et al. (1991) Invest Opthalmol Vis Sci 32:1619–1629], and three reports of cultured epithelial cells containing TTX-blockable Na+ channels: rabbit non-pigmented and pigmented ciliary body epithelium [Ciluffo MC et al. (1991) Invest Opthalmol Vis Sci 32:1619–1629; Fain GL, Farahbakhsh (1989) J Physiol (Lond) 417:83–103] and human lens epithelium [Cooper K et al. (1990) J Membr Biol 117:285–298]. We report here the presence of sodium currents in two different non-cultured, freshly dissociated transporting epithelial cell types: the rabbit corneal endothelium and the frog lens epithelium. We also report the occurrence of sodium currents in six additional cultured ocular epithelial cell types from three different species. These currents have a current/voltage (I/V) relationship consistent with traditional voltage-gated Na+ currents, are quinidine- and TTX-blockable (of the low-affinity TTX-sensitive type), and disappear following bath substitution of Na+ with Cs+ or K+.
Keywords:Corneal endothelium  Lens epithelium  Ciliary body epithelium  Na channel  Tetrodotoxin
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号