Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light |
| |
Authors: | Jennifer J. Kang Derwent Nasser M. Qtaishat David R. Pepperberg |
| |
Affiliation: | Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA |
| |
Abstract: | Electroretinographic (ERG) methods were used to determine response properties of mouse rod photoreceptors in vivo following adapting illumination that produced a significant extent of rhodopsin bleaching. Bleaching levels prevailing at ∼10 min and ∼20 min after the adapting exposure were on average 14% and 9%, respectively, based on the analysis of visual cycle retinoids in the eye tissues. Recovery of the rod response to the adapting light was monitored by analysing the ERG a -wave response to a bright probe flash presented at varying times during dark adaptation. A paired-flash procedure, in which the probe flash was presented at defined times after a weak test flash of fixed strength, was used to determine sensitivity of the rod response to the test flash. Recovery of the response to the adapting light was 80% complete at 13.5 ± 3.0 min (mean ± s.d .; n = 7) after adapting light offset. The adapting light caused prolonged desensitization of the weak-flash response derived from paired-flash data. By comparison with results obtained in the absence of the adapting exposure, desensitization determined with a test-probe interval of 80 ms was ∼fourfold after 5 min of dark adaptation and ∼twofold after 20 min. The results indicate, for mouse rods in vivo , that the time scale for recovery of weak-flash sensitivity substantially exceeds that for the recovery of circulating current following significant rhodopsin bleaching. The lingering desensitization may reflect a reduced efficiency of signal transmission in the phototransduction cascade distinct from that due to residual excitation. |
| |
Keywords: | |
|
|