首页 | 本学科首页   官方微博 | 高级检索  
     

载碱性成纤维细胞生长因子纳米缓释系统与骨髓间充质干细胞的增殖
引用本文:王增荣,张永红,李二峰,陆兴,赵良启. 载碱性成纤维细胞生长因子纳米缓释系统与骨髓间充质干细胞的增殖[J]. 中国临床康复, 2012, 0(47): 8794-8797
作者姓名:王增荣  张永红  李二峰  陆兴  赵良启
作者单位:[1]山西医科大学第二临床医学院骨科,山西省太原市030001 [2]山西大学生物技术研究所,山西省太原市030006
基金项目:国家自然科学基金项目(31040030),项目名称:新型多聚羟基烷酸软骨组织工程载体的研究.
摘    要:背景:课题组运用发酵技术开发出了一种新型多聚羟基烷酸——羟基丁酸与羟基辛酸共聚物,不仅具有聚羟基烷酸的通性,而且其柔韧性与加工性能得到较大改善。目的:检测羟基丁酸与羟基辛酸共聚物载碱性成纤维细胞生长因子纳米微球对骨髓间充质干细胞增殖活性的影响。方法:采用W1/O/W2超声乳化法制备羟基丁酸与羟基辛酸共聚物载碱性成纤维细胞生长因子纳米微球,采用全骨髓法培养骨髓间充质干细胞,按照培养液中所含成分不同分为3组:碱性成纤维细胞生长因子组、纳米微球组、对照组,其中前两组碱性成纤维细胞生长因子的有效质量浓度分别设为10,20,50μg/L。结果与结论:共培养第1,3天,碱性成纤维细胞生长因子组与纳米微球组吸光度值比较差异无显著性意义(P〉0.05),但吸光度值显著高于对照组(P〈0.05),即碱性成纤维细胞生长因子对骨髓间充质干细胞具有明显促增殖作用;第5,7天纳米微球组吸光度值高于碱性成纤维细胞生长因子组(P〈0.01),即纳米微球缓慢释放碱性成纤维细胞生长因子,明显提高生物利用度;第10天纳米微球组细胞仍然有较强的增殖能力,与其他2组比较差异有显著性意义(P〈0.01),而此时碱性成纤维细胞生长因子组、对照组间差异已无显著性意义(P〉0.05)。结果说明纳米微球对碱性成纤维细胞生长因子具有良好的缓释作用,能发挥较为持久的生物学效应,可以持续促进骨髓间充质干细胞增殖。

关 键 词:聚羟基丁酸与羟綦辛酸  碱性成纤维细胞生长因子  缓释微球  骨髓问充质干细胞  增殖

Effects of basic fibroblast growth factor nanospheres on the proliferation of bone marrow mesenchymal stem cells
Wang Zeng-rong,Zhang Yong-hong,Li Er-feng,Lu Xing,Zhao Liang-qi. Effects of basic fibroblast growth factor nanospheres on the proliferation of bone marrow mesenchymal stem cells[J]. Chinese Journal of Clinical Rehabilitation, 2012, 0(47): 8794-8797
Authors:Wang Zeng-rong  Zhang Yong-hong  Li Er-feng  Lu Xing  Zhao Liang-qi
Affiliation:Wang Zeng-rong, Zhang Yong-hong, Li Er-feng, Lu Xing, Zhao Liang-qi
Abstract:BACKGROUND: A new-type poly 3-hydroxybutyrate-co-3-hydroxyoctanoate (PHBHOx) has been developed by fermentation technology, which not only possesses general characteristics but also has impnoued flexibility and processing performance. OBJECTIVE: To detect the effect of PHBHOx encapsulated basic fibroblast growth factor (bFGF) nanospheres on the proliferation of bone mesenchymal stem cells (BMSCs). METHODS: PHBHOx encapsulated bFGF nanospheres were prepared by W1/O/W2 ultrasound emulsification method. Then, BMSCs were cultured by whole bone marrow method. After that the culture solution was divided into three groups: bFGF group, nanospheres group and control group according to its different ingredients. The effective concentration of bFGF in the former two groups was set to 10, 20 and 50 pg/L, respectively. RESULTS AND CONCLUSION: At days 1 and 3, there was no significant difference in absorbance value between bFGF group and nanospheres group (P 〉 0.05), but their absorbance value was both higher than that of the control group (P 〈 0.05); that is bFGF had promotive effect on BMSCs proliferation. At days 5 and 7, the absorbance value of the nanospheres group was higher than that of the bFGF group (P 〈 0.01 ), that was nanospheres could slowly relieve bFGF and obviously improve bioavailability. At day 10, nanospheres group showed strong proliferation capacity, and there was significant difference between the nanospheres group and the other two groups (P 〈 0.01 ). Meanwhile, bFGF group and control group had no significant difference (P 〉 0.05). These results suggest that there is a good sustained-release effect of nanospheres on bFGF and can play durable biological effects to promote BMSCs proliferation continually.
Keywords:
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号