Abstract: | Recent work investigating physiological mechanisms of working memory (WM) has revealed that modulation of alpha and beta frequency bands within the EEG plays a key role in WM storage. However, the nature of that role is unclear. In the present study, we examined event‐related desynchronization of alpha and beta (α/β‐ERD) elicited by visual tasks with and without a memory component to measure the impact of a WM demand on this electrophysiological marker. We recorded EEG from 60 healthy participants while they completed three variants on a typical change detection task: one in which participants passively viewed the sample array, passive (WM?); one in which participants viewed and attended the sample array in search of a target color but did not memorize the colors, active (WM?); and one in which participants encoded, attended to, and memorized the sample array, active (WM+). Replicating previous findings, we found that active (WM+) elicited robust α/β‐ERD in frontal and posterior electrode clusters and that α‐ERD was significantly associated with WM capacity. By contrast, α/β‐ERD was significantly smaller in the passive (WM?) and active (WM?) tasks, which did not consistently differ from one another. Furthermore, no such relationship was observed between WM capacity and desynchronization in the passive (WM?) or active (WM?) tasks. Taken together, these results suggest that α‐ERD during memory formation reflects a memory‐specific process such as consolidation or maintenance, rather than serving a generalized role in perceptual gating or engagement of attention. |