Transport of dietary phenethyl isothiocyanate is mediated by multidrug resistance protein 2 but not P-glycoprotein |
| |
Authors: | Ji Yan Morris Marilyn E |
| |
Affiliation: | Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York at Buffalo, Amherst, NY 14260, USA. |
| |
Abstract: | ![]() We demonstrated recently that phenethyl isothiocyanate (PEITC), a potent anticarcinogen present in cruciferous vegetables, inhibited P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) and that MRP1 can transport PEITC and/or its metabolites. In this study, we have examined whether PEITC is transported by P-gp and MRP2, two transporters with high expression in human intestine, liver and kidney. Using (14)C-PEITC, no significant difference was observed for the intracellular accumulation of PEITC in human breast cancer MCF-7/sensitive (control) and MCF-7/ADR (P-gp overexpressing) cells at PEITC concentrations of 1, 10 and 50 microM. Moreover, the presence of verapamil or PSC833, two P-gp inhibitors, had no significant effect on the intracellular accumulation of PEITC in P-gp overexpressing MCF-7/ADR and MDA435/LCC6MDR1 cells, indicating that PEITC may not be a substrate for P-gp. In contrast, (14)C-PEITC intracellular accumulation in the kidney epithelial MDCK II/MRP2 cells (transfected with human MRP2) was significantly lower than in the wild-type MDCK II/wt cells at PEITC concentrations of 1, 5, 10 and 50 microM. The presence of MK571, an MRP inhibitor, significantly enhanced (14)C-PEITC accumulation in MDCK II/MRP2 but not MDCK II/wt cells. Furthermore, depletion of intracellular glutathione (GSH) following treatment with buthionine sulphoximine, an inhibitor of GSH biosynthesis, significantly increased (14)C-PEITC intracellular accumulation in a concentration-dependent manner. Transcellular transport studies also demonstrated that depletion of intracellular GSH reduced the mean ratio of basal-to-apical transport to apical-to-basal transport of PEITC in MDCK II/MRP2, but not MDCK II/wt cell monolayers. These results indicate that GSH plays an important role in the MRP2-mediated transport of PEITC. The findings provide new information concerning the interactions between PEITC and membrane transporters and suggest the possibility of PEITC interactions with xenobiotics that are MRP2 substrates. |
| |
Keywords: | ABC, ATP-binding cassette BCRP, breast cancer resistance protein BSO, buthionine sulphoximine GSH, glutathione GST, glutathione-S-transferase ITC, isothiocyanate MRP, multidrug resistance protein PEITC, phenethyl isothiocyanate Papp, apparent permeability P-gp, P-glycoprotein |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|