首页 | 本学科首页   官方微博 | 高级检索  
     

基于甲状腺超声图像建立甲状腺乳头状癌中央区淋巴结转移人工智能诊断模型
引用本文:李盈盈,孙文轩,廖献东,张明博,谢芳,陈东浩,张艳,罗渝昆. 基于甲状腺超声图像建立甲状腺乳头状癌中央区淋巴结转移人工智能诊断模型[J]. 中国医学科学院学报, 2021, 43(6): 911-916. DOI: 10.3881/j.issn.1000-503X.13823
作者姓名:李盈盈  孙文轩  廖献东  张明博  谢芳  陈东浩  张艳  罗渝昆
作者单位:1.中国人民解放军总医院第一医学中心超声科,北京 100853;2.北京邮电大学人工智能学院,北京 100876
摘    要:
目的 基于甲状腺超声图像建立甲状腺乳头状癌中央区淋巴结转移人工智能诊断模型。方法 回顾性分析2018年1至12月于中国人民解放军总医院第一医学中心行甲状腺切除及颈部中央区淋巴结清扫的309例甲状腺乳头状癌(PTC)患者的临床资料及超声图像,病理结果为金标准。所有病例被分为训练集(265例)、测试集(44例)。基于深度学习方法建立甲状腺超声图像预测PTC患者中央区淋巴结转移的计算机辅助诊断系统。在测试集中评估该系统的诊断性能。结果 在测试集中,本模型预测PTC患者中央区淋巴结转移的准确性、敏感性、特异性和受试者工作特征曲线下面积可达80%、76%、83%、0.794。结论 基于深度学习的人工智能诊断模型可用于诊断甲状腺乳头状癌患者中央区淋巴结转移,可为临床选择治疗方案提供依据。

关 键 词:甲状腺乳头状癌  中央区淋巴结转移  超声  人工智能  
收稿时间:2021-02-05

A Thyroid Ultrasound Image-based Artificial Intelligence Model for Diagnosis of Central Compartment Lymph Node Metastasis in Papillary Thyroid Carcinoma
LI Yingying,SUN Wenxuan,LIAO Xiandong,ZHANG Mingbo,XIE Fang,CHEN Donghao,ZHANG Yan,LUO Yukun. A Thyroid Ultrasound Image-based Artificial Intelligence Model for Diagnosis of Central Compartment Lymph Node Metastasis in Papillary Thyroid Carcinoma[J]. Acta Academiae Medicinae Sinicae, 2021, 43(6): 911-916. DOI: 10.3881/j.issn.1000-503X.13823
Authors:LI Yingying  SUN Wenxuan  LIAO Xiandong  ZHANG Mingbo  XIE Fang  CHEN Donghao  ZHANG Yan  LUO Yukun
Affiliation:1.Department of Ultrasound,the First Medical Center of PLA General Hospital,Beijing 100853,China;2.School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China
Abstract:
Objective To establish an artificial intelligence model based on B-mode thyroid ultrasound images to predict central compartment lymph node metastasis(CLNM)in patients with papillary thyroid carcinoma(PTC). Methods We retrieved the clinical manifestations and ultrasound images of the tumors in 309 patients with surgical histologically confirmed PTC and treated in the First Medical Center of PLA General Hospital from January to December in 2018.The datasets were split into the training set and the test set.We established a deep learning-based computer-aided model for the diagnosis of CLNM in patients with PTC and then evaluated the diagnosis performance of this model with the test set. Result The accuracy,sensitivity,specificity,and area under receiver operating characteristic curve of our model for predicting CLNM were 80%,76%,83%,and 0.794,respectively. Conclusion Deep learning-based radiomics can be applied in predicting CLNM in patients with PTC and provide a basis for therapeutic regimen selection in clinical practice.
Keywords:papillary thyroid carcinoma  central compartment lymph node metastasis  ultrasound  artificial intelligence  
点击此处可从《中国医学科学院学报》浏览原始摘要信息
点击此处可从《中国医学科学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号